28. Transfection Results (A transferase Codon 268)


We further expanded the molecular enzymology study by constructing the in vitro mutagenized A and B transferase constructs that possessed any one of the 20 amino acids at codon 268 (Yamamoto and McNeill, 1996). A transferase possessed the smallest amino acid residue G at codon 268 and expressed only A antigens. When it was replaced with A, the second smallest amino acid residue, the construct expressed small amounts of B antigens in addition to A antigens. When it was replaced with the slightly larger S or cysteine (C), the constructs also expressed smaller amounts of A antigens and larger amounts of B antigens. The N and threonine (T) constructs only expressed small amounts of B antigens. The remaining constructs did not express either A or B antigens with the exception of the histidine (H) construct, which expressed somewhat moderate amounts of A antigens. 

29. Nucleotide-Sugar Specificity (A transferase Codons 266-268)

01. ABO Blood Group System

Yamamoto, F., and McNeill, P.D. (1996). Amino acid residue at codon 268 determines both activity and nucleotide-sugar donor substrate specificity of human histo-blood group A and B transferases: In vitro mutagenesis study. J Biol Chem 271, 10515-10520. (http://www.jbc.org/cgi/content/full/271/18/10515) 


Histo-blood group ABO system, blood group ABO system, ABO system, AB0 system, ABO blood groups, AB0 blood groups, ABO blood types, AB0 blood types, ABO genetic locus, ABO genes, ABO, AB0, A glycosyltransferases, B glycosyltransferases, glycosyltransferases, A transferase, B transferase, cell surface antigens, carbohydrate antigens, oligosaccharide antigens, oligosaccharides, complex carbohydrate antigens, complex carbohydrates, A antigen, B antigen, H antigen, red blood cell antigens, A/B antigens, ABH antigens, glycolipid, glycosphingolipids, glycoproteins, oligo sugars, red blood cells, RBC, blood transfusion, transfusion medicine, cell/tissue/organ transplantation, transplantation medicine, immunohematology, immunohaematology, immuno-hematology, immunology, ABO genotyping, forensic sciences, legal medicine, human genetics, population genetics, evolution, enzymology, glycobiology, glycosciences, human genes, primate genes, mouse gene, pig genes, alpha 1,3-Gal(NAc) transferases, a1,3-galactosyl transferase, a1,3-GalNAc transferase, structural basis, molecular genetic basis of ABO, ABO polymorphism, single nucleotide polymorphism, SNP, A, B, AB, O, A2, A3, Ax, B3, alleles, weak subgroups, homo sapiens, pig AO genes, cis-AB, B(A), mouse cis-AB gene, ABO genotype, ABO phenotype, DNA methylation, transcription, alternative splicing, Golgi apparatus, transferase chimeras, GBGT1, GGTA1, A3GALT2, monoclonal antibody, sera, plant lectins, Fumi-ichiro Yamamoto, Fumiichiro Yamamoto, F. Yamamoto, Landsteiner, enzyme, kinetics, sugar specificity, acceptor substrate specificity, acceptors, donors, sugars, nucleotide-sugars, genetic engineering, differential susceptibility to infectious diseases, differential cancer susceptibility, alterations in glycosylation in cancer, pancreatic cancer, diets, Peter D'Adamo, Blood type diets, neurobiology, Masahiko Nomi, personality, Burnham Institute, Burnham Institute for Medical Research, Biomembrane Institute, IMPPC, IMPPC Institute of Predictive and Personalized Medicine of Cancer, Institut de Medicina Predictiva i Personalitzada del Càncer,  AABB, ISBT, dbRBC - Blood Group Antigen Gene Mutation Database