Learning Targets
Suppose we wanted to make a concrete bench like the one shown in this picture. If we know that the finished bench has a volume of 10 ft3 and a surface area of 44 ft2 we can use this information to solve problems about the bench.
For example,
To figure out how much the bench weighs, we can use its volume, 10 ft3. Concrete weighs about 150 pounds per cubic foot, so this bench weighs about 1,500 pounds, because 10 •150 = 1,500.
To figure out how long it takes to wipe the bench clean, we can use its surface area, 44 ft2. If it takes a person about 2 seconds per square foot to wipe a surface clean, then it would take about 88 seconds to clean this bench, because 44 • 2 = 88. It may take a little less than 88 seconds, since the surfaces where the bench is touching the ground do not need to be wiped.
Would you use the volume or the surface area of the bench to calculate the cost of the concrete needed to build this bench? And for the cost of the paint?
At a daycare, Kiran sees children climbing on this foam play structure.
Kiran is thinking about building a structure like this for his younger cousins to play on.
Angled View
Side View
The daycare has two sandboxes that are both prisms with regular hexagons as their bases. The smaller sandbox has a base area of 1,146 in2 and is filled 10 inches deep with sand.
How do we use volume and surface area to solve more complex real-world problems?
What other skills did you have to use to solve the problems in this lesson?