B4.6.2.4

Genetic engineering

Content

  • Students should be able to describe genetic engineering as a process which involves modifying the genome of an organism by introducing a gene from another organism to give a desired characteristic.

Plant crops have been genetically engineered to be resistant to diseases or to produce bigger better fruits.

Bacterial cells have been genetically engineered to produce useful substances such as human insulin to treat diabetes.

  • Students should be able to explain the potential benefits and risks of genetic engineering in agriculture and in medicine and that some people have objections.

In genetic engineering, genes from the chromosomes of humans and other organisms can be ‘cut out’ and transferred to cells of other organisms.

Crops that have had their genes modified in this way are called genetically modified (GM) crops. GM crops include ones that are resistant to insect attack or to herbicides. GM crops generally show increased yields.

Concerns about GM crops include the effect on populations of wild flowers and insects. Some people feel the effects of eating GM crops on human health have not been fully explored.

Modern medical research is exploring the possibility of genetic modification to overcome some inherited disorders.

(HT only) Students should be able to describe the main steps in the process of genetic engineering.

(HT only) In genetic engineering:

  • enzymes are used to isolate the required gene; this gene is inserted into a vector, usually a bacterial plasmid or a virus
  • the vector is used to insert the gene into the required cells
  • genes are transferred to the cells of animals, plants or microorganisms at an early stage in their development so that they develop with desired characteristics.

Explain why data is needed to answer scientific questions, and why it may be uncertain, incomplete or not available. Outline a simple ethical argument about the rights and wrongs of a new technology.,

Describe and explain specified examples of the technological applications of science. Describe and evaluate, with the help of data, methods that can be used to tackle problems caused by human impacts on the environment.