Abstract: Reliable robot autonomy hinges on decision-making systems that account for uncertainty without imposing overly conservative restrictions on the robot's action space.
We introduce Chance-Constrained Via-Point-Based Stochastic Trajectory Optimisation (CC-VPSTO), a real-time capable framework for generating task-efficient robot trajectories that satisfy constraints with high probability by formulating stochastic control as a chance-constrained optimisation problem. Since such problems are generally intractable, we propose a deterministic surrogate formulation based on Monte Carlo sampling, solved efficiently with gradient-free optimisation. To address bias in naïve sampling approaches, we quantify approximation error and introduce padding strategies to improve reliability. We focus on three challenges: (i) sample-efficient constraint approximation, (ii) conditions for surrogate solution validity, and (iii) online optimisation. Integrated into a receding-horizon MPC framework, CC-VPSTO enables reactive and task-efficient control under uncertainty. The strengths of our approach lie in its generality, i.e. no assumptions on the underlying uncertainty distribution, system dynamics, cost function, or the form of inequality constraints; and its applicability to online robot motion planning. We demonstrate the validity and efficiency of our approach in both simulation and on a Franka Emika robot.