Google Scholar is up to date and will have links to the papers


  1. YM Law, D Appelö, The Hermite-Taylor Correction Function Method for Maxwell's Equations, arXiv preprint arXiv:2210.07134, 2022.

  2. K van der Sande, D Appelö, N Albin, Fourier Continuation Discontinuous Galerkin Methods for Linear Hyperbolic Problems, Communications on Applied Mathematics and Computation, 1-21, 2022.

  3. L Zhang, D Appelö, T Hagstrom, Energy-based discontinuous Galerkin difference methods for second-order wave equations, Communications on Applied Mathematics and Computation 4 (3), 855-879, 2022.

  4. D Appelö, F Garcia, AA Loya, O Runborg, El-WaveHoltz: A Time-Domain Iterative Solver for Time-Harmonic Elastic Waves, CMAME, 2022.

  5. F Garcia, D Appelö, O Runborg, Extensions and Analysis of an Iterative Solution of the Helmholtz Equation via the Wave Equation, arXiv preprint arXiv:2205.12349, 2022.

  6. S Wang, D Appelö, G Kreiss, An energy-based summation-by-parts finite difference method for the wave equation in second order form, Journal of Scientific Computing 91 (2), 1-22, 2022.

  7. Z Peng, D Appelö, S Liu, Universal AMG Accelerated Embedded Boundary Method Without Small Cell Stiffness, arXiv preprint arXiv:2204.06083, 2022.

  8. Z Peng, D Appelö, EM-WaveHoltz: A flexible frequency-domain method built from time-domain solvers, IEEE Transactions on Antennas and Propagation, 2022.

  9. Y Yang, A Townsend, D Appelö, Anderson acceleration based on the H_s Sobolev norm for contractive and noncontractive fixed-point operators, Journal of Computational and Applied Mathematics 403, 113844, 2022.

  10. A Alvarez Loya, D Appelö, A Hermite Method with a Discontinuity Sensor for Hamilton–Jacobi Equations, Journal of Scientific Computing 90 (3), 1-31, 2022.

  11. H Li, D Appelö, X Zhang, Accuracy of Spectral Element Method for Wave, Parabolic, and Schrödinger Equations, SIAM Journal on Numerical Analysis 60 (1), 339-363, 2022.

  12. D Appelö, L Zhang, T Hagstrom, F Li, An Energy-Based Discontinuous Galerkin Method with Tame CFL Numbers for the Wave Equation, BIT Numerical Mathematics, 2022.

  13. O Beznosov, D Appelö, Hermite-discontinuous Galerkin overset grid methods for the scalar wave equation, Communications on Applied Mathematics and Computation 3 (3), 391-418, 2021.

  14. T Hagstrom, D Appelö, L Zhang, Discontinuous Galerkin Methods for Electromagnetic Waves in Dispersive Media, 2021 International Applied Computational Electromagnetics Society Symposium, 2021.

  15. D Appelö, Z Peng, EM-WaveHoltz: How to find Time-Harmonic Solutions by Time-Domain Solvers and Positive Definite Systems, 2021 International Applied Computational Electromagnetics Society Symposium, 2021.

  16. NA Petersson, F Garcia, D Appelo, S Günther, Y Choi, R Vogt, Quantum Physics without the Physics, arXiv preprint arXiv:2012.03865, 2020.

  17. D Appelö, T Hagstrom, Q Wang, L Zhang, An energy-based discontinuous Galerkin method for semilinear wave equations, Journal of Computational Physics 418, 109608, 2020.

  18. T Babb, PG Martinsson, D Appelö, HPS Accelerated Spectral Solvers for Time Dependent Problems: Part II, Numerical Experiments, Spectral and High Order Methods for Partial Differential Equations, 131, 2020.

  19. T Babb, PG Martinsson, D Appelö, HPS Accelerated Spectral Solvers for Time Dependent Problems: Part I, Algorithms, Spectral and High Order Methods for Partial Differential Equations, 155, 2020.

  20. K Heinemann, D Appelö, DP Barber, O Beznosov, JA Ellison, Reevaluation of spin-orbit dynamics of polarized beams in high energy circular accelerators and storage rings: An approach based on a Bloch equation, International Journal of Modern Physics A 35 (15n16), 2041003, 2020.

  21. D Appelo, F Garcia, O Runborg, WaveHoltz: iterative solution of the Helmholtz equation via the wave equation, SIAM Journal on Scientific Computing 42 (4), A1950-A1983, 2020.

  22. K Heinemann, D Appelö, DP Barber, O Beznosov, JA Ellison, The Bloch equation for spin dynamics in electron storage rings: computational and theoretical aspects, International Journal of Modern Physics A 34 (36), 1942032, 2019.

  23. D Appelö, VA Bokil, Y Cheng, F Li, Energy Stable SBP-FDTD Methods for Maxwell–Duffing Models in Nonlinear Photonics, IEEE Journal on Multiscale and Multiphysics Computational Techniques 4, 329-336, 2019.

  24. L Zhang, T Hagstrom, D Appelö, An energy-based discontinuous Galerkin method for the wave equation with advection, SIAM J. Numer. Anal. 57 (5), 2469–2492, 2019.

  25. D Appelö, S Wang, An energy‐based discontinuous Galerkin method for coupled elasto‐acoustic wave equations in second‐order form, International Journal for Numerical Methods in Engineering 119 (7), 618-638, 2019.

  26. D Appelo, F Garcia, O Runborg, WaveHoltz: Parallel and scalable solution of the Helmholtz equation, SEG Technical Program Expanded Abstracts 2019, 1541-1545, 2019.

  27. A Abada, M Abbrescia, SS AbdusSalam, I Abdyukhanov, ..., HE-LHC: The high-energy large hadron collider, The European Physical Journal Special Topics 228 (5), 1109-1382, 2019.

  28. A Abada, M Abbrescia, SS AbdusSalam, I Abdyukhanov, ..., FCC-hh: The hadron collider, The European Physical Journal Special Topics 228 (4), 755-1107, 2019.

  29. A Abada, M Abbrescia, SS AbdusSalam, I Abdyukhanov, JA Fernandez, ..., FCC physics opportunities, The European Physical Journal C 79 (6), 1-161, 2019.

  30. A Abada, M Abbrescia, SS AbdusSalam, I Abdyukhanov, ..., FCC-ee: the lepton collider, The European Physical Journal Special Topics 228 (2), 261-623, 2019.

  31. D Appelö, V Bokil, Y Cheng, F Li, Energy Stable Staggered High Order Finite Differences for Optical Media, 2019 International Applied Computational Electromagnetics Society Symposium, 2019.

  32. M Motamed, D Appelo, Wasserstein metric-driven bayesian inversion with applications to signal processing, International Journal for Uncertainty Quantification 9 (4), 2019.

  33. K Heinemann, D Appelö, DP Barber, O Beznosov, JA Ellison, Spin dynamics in modern electron storage rings: Computational and theoretical aspects, ICAP18, Key West, 19-23, 2018.

  34. D Appelö, T Hagstrom, An energy-based discontinuous Galerkin discretization of the elastic wave equation in second order form, Computer Methods in Applied Mechanics and Engineering 338, 362-391, 2018.

  35. A. Kornelus and D. Appelö, Flux-conservative Hermite methods for simulation of nonlinear conservation laws. Journal of Scientific Computing, Volume 76, Issue 1, pp 24–47, 2018. Link

  36. K. A. Heinemann, O. Beznosov, J. A. Ellison, D. P. Barber and Daniel Appelö, A PSEUDOSPECTRAL METHOD FOR SOLVING THE BLOCH EQUATIONS OF THE POLARIZATION DENSITY IN e− STORAGE RINGS, 9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada, 2018, Link.

  37. D. Appelö, G. Kreiss, and S. Wang, An Explicit Hermite-Taylor Method for the Schrödinger Equation, Communications in Computational Physics, Volume 21, Issue 5 May 2017 , pp. 1207-1230. pdf

  38. A. Kornelus and D. Appelö, On the scaling of entropy viscosity in high order methods. Springer Lecture Notes in Computational Science and Engineering, 2016. pdf

  39. D. Appelö, T. Hagstrom, A. Kornelus, Sobolev-dG a class of dG methods with tame CFL numbers. Extended abstract Waves 2017. pdf

  40. D. Appelö and S. Wang, An energy based discontinuous Galerkin method for acoustic-elastic waves. Extended abstract Waves 2017. pdf

  41. D. Appelö, T. Hagstrom and A. Semenova An Energy Based Discontinuous Galerkin Method for Hamiltonian Systems. Extended abstract Waves 2017. pdf

  42. D. Appelö and T. Hagstrom, A new discontinuous Galerkin formulation for wave equations in second order form. Siam Journal On Numerical Analysis, 53(6):2705–2765, 2015. pdf

  43. T. Hagstrom and D. Appelö, Solving PDEs with Hermite Interpolation, Springer Lecture Notes in Computational Science and Engineering 2015. pdf

  44. T. Colonius, A. Sinha, D. Rodriguez, A. Towne, J. Liu, G.A. Brès, D. Appelö and T. Hagstrom, Simulation and Modeling of Turbulent Jet Noise, J. Fröhlich et al. (eds.), Direct and Large-Eddy Simulation IX, ERCOFTAC Series 20. pdf

  45. Xi (Ronald) Chen, D. Appelö and Thomas Hagstrom, A Hybrid Hermite - Discontinuous Galerkin Method for Hyperbolic Systems with Application to Maxwell’s Equations, J. Comp. Phys., 2013. pdf

  46. D. Appelö and N. A. Petersson, A fourth-order accurate embedded boundary method for the wave equation, SIAM Journal on Scientific Computing, 34(6):2982–3008, 2012. pdf

  47. D. Appelö, J. W. Banks, W. D. Henshaw, and D. W. Schwendeman. Numerical methods for solid mechanics on overlapping grids: Linear elasticity. J. of Comp. Phys., 231(18):6012–6050, 2012. pdf

  48. C. Y. Jang, D. Appelö, T. Colonius, T. Hagstrom. An Analysis of Dispersion and Dissipation Properties of Hermite Methods and its Application to Direct Numerical Simulation of Jet Noise. 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 2012. pdf

  49. T. Hagstrom, D. Appelö, T. Colonius, M. Inkman, and C. Y. Jang. Simulation of compressible flows using Hermite methods. The Journal of the Acoustical Society of America, 131(4):3429–3429, 2012. pdf

  50. D Appelö and T. Hagstrom. On Advection by Hermite Methods. Paciffic Journal Of Applied Mathematics, Vol. 4 Issue 2, 2011. pdf

  51. D Appelö, M. Inkman, T. Hagstrom and T. Colonius. Hermite Methods for Aeroacoustics: Recent Progress. AIAA-2011-2757, 17th AIAA/CEAS Aeroacoustics Conference 2011. pdf

  52. T. Hagstrom, D. Appelö and C. Y. Jang. Hermite Methods for hyperbolic-parabolic systems. extended abstract Waves2011, Vancouver, Canada 2011. pdf

  53. C.L. Ting, D. Appelö, and Z.G. Wang. Minimum energy path to membrane pore formation and rupture. Physical Review Letters, 106(16):168101, 2011. pdf

  54. D. Appelö, T. Colonius, T. Hagstrom, and M. Inkman. Development of arbitrary-order hermite methods for simulation and analysis of turbulent jet noise. Procedia IUTAM, 1:19–27, 2010. pdf

  55. A. Samanta, D. Appelö, T. Colonius, J. Nott and J. Hall, Computational Modeling and Experiments of Natural Convection for a Titan Montgolfiere, AIAA Journal 2. pdf

  56. T. Colonius, D. Appelö, J. Nott and J. Hall, Computational Modeling and Experiments of Natural Convection for a Titan Montgolfiere, AIAA Balloon Systems Conference, AIAA-2009-2806, Seattle 2009. pdf

  57. D. Appelö and N. A. Petersson, A compact fourth-order-accurate embedded boundary method for the wave equation, extended abstract Waves2009, Pau, France. pdf

  58. D. Appelö and T. Colonius, A high order super-grid-scale absorbing layer and its application to linear hyperbolic systems, Journal of Computational Physics, 228 (11), 4200-4217, 2009. pdf

  59. D. Appelö and T. Hagstrom, A general perfectly matched layer model for hyperbolic-parabolic systems, SIAM Journal on Scientific Computing, 31 (5), 3301-3323, 2009. pdf

  60. D. Appelö and N. A. Petersson, A stable finite difference method for the elastic wave equation on complex geometries with free surfaces, Communications in Computational Physics, Vol. 5, 84-107, 2009. pdf

  61. V. Eliasson, W. D. Henshaw and D. Appelö, On cylindrically converging shock waves shaped by obstacles, Physica D: Nonlinear Phenomena, Vol. 237, 2203-2209, 2008. pdf

  62. T. Hagstrom and D. Appelö, Automatic Symmetrization and Energy Estimates Using Local Operators for Partial Differential Equations Comm. PDE, Volume 32 Issue 7, 1129 pdf

  63. D. Appelö, S. Nilsson, A. N. Petersson and B. Sjogreen, A stable finite difference method for the elastic wave equation on complex domains with free surface boundary conditions, Proceedings of Waves 2007, Reading, UK July 23-27, 2007 pdf

  64. T. Hagstrom and D. Appelö, Experiments with Hermite Methods for Simulating Compressible Flows: Runge-Kutta Time-Stepping and Absorbing Layers, AIAA-2007-3505. pdf

  65. D. Appelö and G. Kreiss, Application of a perfectly matched layer to the nonlinear wave equation, Wave Motion Vol. 44, 2007, pp531-548. pdf

  66. D. Appelö, T. Hagstrom and G. Kreiss, Perfectly matched layers for hyperbolic systems: general formulation, well-posedness and stability, SIAM J. Appl. Math. 67, 1 (2006). pdf

  67. D. Appelö and G. Kreiss, A New Absorbing Layer for Elastic Waves, Journal of Computational Physics 215 (2), pp642-660. pdf

  68. D. Appelö, Absorbing Layers and Non-Reflecting Boundary Conditions for Wave Propagation Problems, Doctoral Thesis, Stockholm, Sweden, 2005. pdf

  69. D. Appelö and T. Hagstrom, Construction of stable PMLs for general 2 X 2 symmetric hyperbolic systems, Proceedings of the HYP2004 conference, September 13-17 2004, Osaka, Japan. pdf

  70. D. Appelö, Non-reflecting Boundary Conditions for Wave Propagation Problems, Licenciates Thesis, Royal Institute of Technology, Stockholm 2003. pdf

  71. D. Appelö and G. Kreiss, Stabilized Local Non-reflecting Boundary Conditions for High Order Methods, TRITA-NA-0325, Royal Institute of Technology, Stockholm 2003. pdf

  72. D. Appelö and G. Kreiss, Discretely Nonreflecting Boundary Conditions for Higher Order Centered Schemes for Wave Equations, Proceedings of the WAVES2003 conference, 30 June - 4 July 2003, Jyväskylä, Finland. pdf

  73. D. Appelö and G. Kreiss, Evaluation of a well-posed Perfectly Matched Layer for Computational Acoustics,Proceedings of the HYP2002 conference, March 25-29 2002, Pasadena, USA. pdf

  74. D. Appelö, PML-methods for the linearized Euler equations, Master's Thesis in Numerical Analysis, Royal Institute of Technology, Stockholm 2000. pdf

Miscellaneous

D. Appelö and T. Hagstrom, Numerical Experiments on the Perfect Matching of Perfectly Matched Layers, unpublished note, 2009.

K. Virta and D. Appelö, Formulae and Software for Particular Solutions to the Elastic Wave Equation in Curved Geometries, unpublished note, 2016. pdf