UC Berkeley CS267 Home Page
Applications of Parallel Computers
Spring 2020
Tu/Th 11am-12:30pm, 306 Soda Hall
See Piazza for the latest plans on course adjustments due to COVID-19. Final Projects are now due May 13, but this is a firm deadline.
Instructors:
- Aydin Buluc (send email), Office Hours Mo 2:00-3:00pm at https://berkeley.zoom.us/j/9945427874, book here
- Jim Demmel (send email), Office Hours Mo 2:00-3:00, We 10:00-11:00, Fr 2:00-3:00, at https://berkeley.zoom.us/j/8478008973
- Kathy Yelick (send email), Office Hours arrange by email
Graduate Student Instructors:
- Giulia Guidi (send email)
- Mo 4:00-5:00pm, make appt. here: Giulia Guidi's OH Appointment Page
- We 4:00-5:00pm, make appt. here: Giulia Guidi's OH Appointment Page
- Alex Reinking (send email)
- We 2:00-3:00pm, https://berkeley.zoom.us/j/8950784895 make appt. here: Alex Reinking's OH Appointment Page
- Fri 2:00-3:00pm, https://berkeley.zoom.us/j/8950784895 make appt. here: Alex Reinking's OH Appointment Page
- Ed Younis (send email)
- Tu 8:30-9:30 am, https://berkeley.zoom.us/j/391-721-9756 make appt. here: Ed Younis' OH Appointment Page
- Th 8:30-9:30 am, https://berkeley.zoom.us/j/391-721-9756 make appt. here: Ed Younis' OH Appointment Page
To contact the teaching staff, send email to cs267@lists.eecs.berkeley.edu. This email is monitored by all of us and will therefore lead to a faster response than emailing one of us individually.
Piazza: Please join our Piazza Group. We will post assignments and announcements there.
Lectures: 11-12:30 in 306 Soda Hall.
Grading:
- Survey: 1%
- HW 1:
8%10% - HW 2.1, HW 2.2, HW 2.3:
9% each10% each HW 3: 9%- Quizzes: 10%
- Project:
45%49% (Pre-proposal and proposal and virtual poster session included)
Syllabus and Motivation
CS267 was originally designed to teach students how to program parallel computers to efficiently solve challenging problems in science and engineering, where very fast computers are required either to perform complex simulations or to analyze enormous datasets. CS267 is intended to be useful for students from many departments and with different backgrounds, although we will assume reasonable programming skills in a conventional (non-parallel) language, as well as enough mathematical skills to understand the problems and algorithmic solutions presented. CS267 satisfies part of the course requirements for the Designated Emphasis ("graduate minor") in Computational Science and Engineering.
While this general outline remains, a large change in the computing world started in the mid 2000's: not only are the fastest computers parallel, but nearly all computers are becoming parallel, because the physics of semiconductor manufacturing will no longer let conventional sequential processors get faster year after year, as they have for so long (roughly doubling in speed every 18 months for many years). So all programs that need to run faster will have to become parallel programs. (It is considered very unlikely that compilers will be able to automatically find enough parallelism in most sequential programs to solve this problem.) For background on this trend toward parallelism, click here.
Students in CS267 will get an overview of the parallel architecture space, gain experience using some of the most popular parallel programming tools, and be exposed to a number of open research questions. The lectures will also cover a broad set of parallelization strategies for applications covering numerical simulation and data analysis to machine learning.