Алгоритм можно описать разными способами: словами, на языке программирования, а также с помощью блок-схем.
На языке блок-схем каждый шаг алгоритма описывается с помощью соответствующей фигуры, а последовательность выполнения шагов определяется линиями-связями. Блок схемы читаются сверху вниз и слева направо.
Блок-схемы полезны тем, что обеспечивают легкую «читаемость» алгоритма. Однако это не всегда так: стоит попытаться нарисовать блок-схему для более-менее сложного алгоритма, как она разрастается до невероятных размеров и теряет все свое наглядное преимущество. Поэтому блок-схемы хороши в структурном программировании для описания коротких алгоритмов.
Язык блок-схем прост (хотя существуют его расширенные варианты):
В рамках структурного программирования задачи, имеющие алгоритмическое решение, могут быть описаны с использованием следующих алгоритмических структур:
Ветвление if
Это самый простой тип ветвления. Если результат вычисления выражения-условия возвращает true (правда), то выполнение алгоритма идет по ветке «Да», в которую включены дополнительные выражения-действия. Если условие возвращает false (ложь), то выполнение алгоритма идет по ветке «нет», т.е продолжает выполняться основная ветка программы.
Ветвление if-else
Если выражение-условие возвращает true (правда), то выполнение алгоритма идет по ветке «Да», если условие не выполняется (false), то выполнение идет по ветке «Нет». При любом результате выражения-условия нельзя вернуться в основную ветку программы, минуя дополнительные действия.
Ветвление if-elif-else
Количество условий может быть различно. Если выполняется первое, то после выполнения действий, программа переходит к основной ветке, не проверяя дальнейшие условия. Если первое условие возвращает ложь, то проверяется второе условие. Если второе условие возвращает правду, то выполняются действия, включенные в вторую ветку конструкции. Последнее условие проверяется лишь в том случае, если ни одно до него не дало в результате true. Данную алгоритмическую конструкцию (if – elif – else) не следует путать с алгоритмической конструкцией «Выбор».
Цикл for
Данный цикл также называют циклом «Для» (for). В его заголовке указывается три параметра: начальное значение переменной (от), конечно значение (до) и ее изменение с помощью арифметической операции на каждом «обороте» цикла (шаг).
Цикл while
Пока условие выполняется (результат логического выражения дает true), будут выполняться действия тела цикла. После очередного выполнения вложенных действий условие снова проверяется. Для того чтобы выполнение алгоритма не зациклилось, в теле цикла (помимо прочих действий) должно быть выражение, в результате выполнения которого будет изменяться переменная, используемая в условии. Тело цикла может ни разу не выполнится, если условие с самого начала давало false.
Цикл do
В этом цикле первый раз условие проверяется лишь после выполнения действий тела цикла. Если условие возвращает true, то выражения-действия повторяются снова. Каким бы ни было условие, тело данного цикла хотя бы раз, но выполнится.
Алгоритм Евклида – это алгоритм нахождения наибольшего общего делителя (НОД) пары целых чисел.
Наибольший общий делитель (НОД) – это число, которое делит без остатка два числа и делится само без остатка на любой другой делитель данных двух чисел. Проще говоря, это самое большое число, на которое можно без остатка разделить два числа, для которых ищется НОД.
Описание алгоритма нахождения НОД делением
Пример:
Найти НОД для 30 и 18.
30/18 = 1 (остаток 12)
18/12 = 1 (остаток 6)
12/6 = 2 (остаток 0). Конец: НОД – это делитель. НОД (30, 18) = 6
Перебор делителей – это алгоритм, предназначенный для определения, какое число перед нами: простое или составное.
Алгоритм заключается в последовательном делении заданного натурального числа на все целые числа, начиная с двойки и заканчивая значением меньшим или равным квадратному корню тестируемого числа. Если хотя бы один делитель делит тестируемое число без остатка, то оно является составным. Если у тестируемого числа нет ни одного делителя, делящего его без остатка, то такое число является простым.
Решето Эратосфена – это алгоритм нахождения простых чисел до заданного числа n. В процессе выполнения данного алгоритма постепенно отсеиваются составные числа, кратные простым, начиная с 2.