Abstract - In this talk we will present a recent lower bound for the first eigenvalue of the Laplacian of closed embedded minimal hypersurfaces in the unit sphere.
Such an estimate is not sharp but it improves previous results concerning Yau's conjecture and can be generalized for minimal hypersurfaces in other ambients. If time permits we will also comment about the case when the hypersurface is isoparametric. This is a joint work with Carlos Tapia and Detang Zhou.
Abstract - Nesta palestra, o objetivo é construir métodos de aproximação (numérica) para equações Hamiltonianas no contexto de colchetes de Poisson. A ideia principal é que o método preserve a geometria subjacente, como no caso não-degenerado dos chamados "integradores simpléticos". Para isto, vamos utilizar a noção de realização simplética, lembrar de alguns resultados conhecidos sobre estas estruturas, e ver como utilizá-las para nossa aproximação. Finalmente, vamos introduzir uma nova ideia de "realizações aproximadas" que permite construir métodos numéricos concretos e implementáveis no computador. Esta palestra é baseada em trabalho recente com D. de Diego e M. Vaquero (arXiv:2409.04342 [math.NA]).
Abstract - The Ginzburg-Landau functional was introduced in physics to describe the behavior of superconducting materials. However, this functional can be defined on any Riemannian manifold equipped with a vector bundle. In the case where the base manifold is Kähler, this functional has a minimum value that depends only on the topology of the bundle, and this minimum is attained at points that are solutions to the so-called vortex equations.
In this seminar, I will present a possible version of the vortex equations for the case where the manifold is a 3-dimensional Sasakian manifold. I will also show that the solutions to these equations minimize the Ginzburg-Landau functional under a suitable framework. If time permits, I will discuss the relationship between these equations and the existence of stable critical points of the Ginzburg-Landau functional on the 3-sphere.
This is ongoing research in collaboration with Da Rong Cheng (U Miami).
Abstract - A hypersurface with boundary contained into a region of the ambient space is said to be capillary if its boundary meets the boundary of the region at a constant angle. In this talk we discuss a variational characterization of constant higher order mean curvature capillary hypersurfaces supported on a totally umbilical hypersurface of a space form, obtained by Guo-Li-Xia, as well as some stability results proved by Damasceno-Elbert and Guo-Li-Xia. We also discuss the notion of stability on a general ambient space and state a criteria for free boundary tubes in product spaces MxR.
Abstract - O invariante de Futaki é uma família de invariantes integrais cujo anulamento é uma condição necessária para a existência de uma métrica Kahleriana de curvatura escalar constante. A presente palestra será uma apresentação expositiva de um problema mais simples e mais antigo que compartilha alguns pontos com o problema de curvatura escalar em geometria Kahleriana. Na década de 70 o Kazdan e Warner perguntaram sobre quais funções em variedades bidimensionais podem ser realizadas como a curvatura Gaussiana de alguma métrica e, mais ainda, de alguma métrica dentro de uma classe conforme. Vou descrever alguns resultados que obtiveram e tentar relacioná-los com os invariantes de Futaki.
Abstract - In this talk, I will explain how to obtain numerical invariants of group actions on 3-manifolds, using ideas from equivariant gauge theory, and I will demonstrate their utility in a variety of applications.
Abstract - We describe a Lorentzian signature model for Mobius geometry, and an equivariant correspondence between time-like curves in this geometry and null curves in anti-de Sitter 3-space. We then define a two-parameter family of left-invariant symplectic forms on this space of curves and a Hamiltonian whose flow is equivalent to the Camassa-Holm family, as described by Khesin and Misiolek, as well as a fully bi-invariant (Mobius-invariant) flow equivalent to KdV, which corresponds on the null curve side to that recently described by Musso in this very seminar.
Abstract - Nesta palestra, apresentaremos os resultados de um trabalho em conjunto com Giuseppe Pipoli (Università degli Studi dell’Aquila), os quais incluem a existência e unicidade dos solitons de translação do fluxo pela curvatura média de ordem superior nos produtos R^n x R e H^n x R, os quais são invariantes por rotações ou translações (euclidianas, parabólicas ou hiperbólicas).
Abstract - The modern study of knots lies at the heart of low dimensional topology where knots are viewed as elastic loops. However, real life knots, such as ropes, fibres, and DNA have thickness, fixed length and bounded flexibility. In this talk, I will discuss some recent results on geometric knot theory such as the solution (for some cases) of the ribbon length problem, and the existence of isotopy classes of geometric knots different from the ones in classical knot theory, called the Gordian knot conjecture.
Abstract - We formulate integrable geometric flows related to the mKdV hierarchy on Legendrian curves in 3-dimensional pseudo-hermitian geometries (the anti-de Sitter 3-space AdS^{1,2}, the 3-sphere S^3 and the Heisenberg group H^3, equipped with their natural pseudo-hermitian structures). For the first flow among these (that induces the mKdV equation) we investigate closed solutions which evolve by pseudo-hermitian automorphisms (stationary solutions). We also analyze the evolutions of Legendrian curves originated by the 3-paramenter family of breather-lattice solutions of mKdV. Exploiting the specific properties of AdS^{1,2}, S^3 and H^3, we analyze the interrelationships with the Goldtein-Petrich, Dolwisa-Santini and Langer-Perline flows in the Euclidean plane and in the 2-sphere. We show that these flows can be adapted to the hyperbolic plane.
The results have been obtained in a joint project with Annalisa Calini, Tom Ivey and Álvaro Pámapano.
Abstract - Let Y be a symplectic divisor of X, \omega. Given an Lagrangian L in (Y, \omega|Y), we can lift it to a Lagrangian L' in neighbourhood NY \subset X. We will introduce the notion of thr potential of a Lagrangian, which encodes information of Maslov index 2 J-holomorphic disks with boundary on it. We will discuss the conditions in which the potential for L' relates with the potential for L according to a lifting formula. In particular, this formula involves counts J-holomorphic spheres with certain tangency on Y (part of relative Gromov-Witten invariants). It generalizes a formula that can be extracted from Biran-Khanevski, under some more restrictive assumptions on Y. As applications, we recover some Lefschetz formulas appearing in the work of Coates-Corti-Galkin-Kasprczyk and show the existence of infinitely many Lagrangian tori in CP^n, Quadrics, Cubics, among other symplectic manifolds. This is joint work with Luis Diogo, Dmitry Tonkonog and Weiwei Wu.
Abstract - In this talk, we present the construction of every homotopy sphere \Sigma^7 in dimension 7 in a way that supports \mathrm{O}(3)-actions. We show that it is possible to identify the corresponding orbit map for the \mathrm{O}(3)-action with the orbit map for a \mathrm{O}(1)-action on the Brieskorn 3-sphere, given by the intersection of \{(u,v,z)\in\mathbb{C}^3: u^{6k-1}+u^3+z^2=0\} with the sphere \{(u,v,z)\in\mathbb{C}^3: |u|^2+|v|^2+|z|^2 = 1\}. Whenever \gcd(6k-1,3)=1, we can construct a map from a homotopy sphere in dimension 7 to an algebraic curve in \mathbb{P}^2. Such parameterization allows us to study properties of exotic spheres and ``homotopy Hopf manifolds'' \Sigma^7\times\mathrm{S}^1 from the point of view of singularity theory. We explain how this connects to the concept of spherical duality -- a generalization built for T-duality, inserted in the basis of mirror symmetry.
This presentation is based on ongoing work with Ludmil Katzarkov (UMiami) and Lino Grama (Unicamp).
Abstract - In the late 1990s, Guillemin and Abreu described all invariant, compatible, Kähler metrics for symplectic toric manifolds. They used singular Hessian metrics in the associated Delzant polytopes. Abreu's work also include a fourth-order nonlinear PDE expressing the condition for an invariant Kähler metric to be extremal, in the sense of Calabi. Later, Donaldson developed various estimates for solutions of Abreu's equation, sparking a series of subsequent research works in the subject.
In this talk, I'll discuss invariant Kähler metrics for principal Hamiltonian actions of symplectic torus bundles. This paves the way to extend the theory to non-toric manifolds and to the discover of additional examples of extremal Kähler metrics.
This presentation is based on ongoing joint work with Miguel Abreu (IST-Lisbon) and Maarten Mol (Max Plank-Bonn).
Abstract - A hypercomplex structure on a Lie algebra is a triple of complex structures I, J, and K on g satisfying the quaternionic relations. A quaternionic-solvable Lie algebra is an algebra, which admits a filtration by quaternionic-invariant subalgebras, such that each successive quotient is abelian, and which terminates at some step. We will discuss the quaternionic-solvable hypercomplex structures on a nilpotent Lie algebra and hypercomplex nilmanifolds, corresponding to them.
Resumo - A noção de G2-instanton foi inicialmente proposta por Donaldson e Thomas (1998), como um análogo em dimensão 7 das conexões planas em dimensão 3 e de conexões auto-duais em dimensão 4. Neste seminário, vamos apresentar os resultados obtidos em colaboração com A. Clarke-UFRJ e V. Del Barco-Unicamp (arXiv:2304.04284), sobre a construção de G2-instatons em grupos de Lie nilpotentes 2-passos, munidos de G2-estrutura cofechada invariante à esquerda. Em primeiro lugar, vamos explicar como a condição instanton impõe restrições na torção da G2-estrutura, dependendo da dimensão do comutador do grupo de Lie. E em segundo lugar, classificamos os grupos que admitem um G2-instanton, dado pela G2-conexão canônica, i.e. a única conexão com a holonomia contida G2 e torção totalmente anti-simétrica. Finalmente, vamos explicar como estes exemplos de G2-instantons, aparecem como soluções do sistema G2-Strominger, esta última parte é um trabalho em andamento com V. del Barco e U. Fowdar da Unicamp.
Resumo - Explicaremos como a Teoria de Morse-Lusternik-Schnirelman para a função distância entre pares de pontos de um círculo mergulhado em uma variedade Riemanniana completa permite definir uma noção de largura, que generaliza adequadamente a noção clássica para curvas planas. Em particular, discutiremos quem são as generalizações de curvas com largura constante nesta teoria e suas propriedades básicas.
Resumo/Abstract - We give a small overview of the vast topic on half space (and wedge/cone) theorems in Euclidean and Hyperbolic spaces, introduce some new techniques and how to reprove classical results with them, and show how this can allow us to generalise classical results to more general settings in Riemannian geometry.