研發成果
專案與創新設備
R&D Projects and Devices
R&D Projects and Devices
Journal 期刊論文
跨領域團隊論文"An integrated microflow cytometry platform with artificial intelligence capabilities for point-of-care cellular phenotype analysis ",獲得接受刊登 (https://doi.org/10.1016/j.bios.2024.117074 )
Conference 研討會論文
Ming-Shen Jian, Chun-Ho Cheng, Jay-Hong Cheng, Ming-Hsun Tsai, Wen-Yu Chung, Chi-Hua Chang, “Multi-Users Extended Reality Remote Collaborative Operation Application based on Digital Twins 3D Projecting,” 2025 27th International Conference on Advanced Communications Technology (ICACT), Pyeong Chang, Korea, Republic of, 2025, pp.283-288, doi: 10.23919/ICACT63878.2025.10936796 (EI)
Ming-Shen Jian, Yi-Ling Ye, Wen-Yu Chung, Wen-Xuan Li, Yan-Ting Lin, Bo-Yuan Huang, Javeria Sikandar, Yu-Jung Chang, “Dynamic Bio-Information Image Recognition of Cancel Cell Death based on Parallel Multiple Artificial Intelligence Modules,” 2025 27th International Conference on Advanced Communications Technology (ICACT), Pyeong Chang, Korea, Republic of, 2025, pp.289-294, doi: 10.23919/ICACT63878.2025.10936790 (EI)
本作品可以使用相應生醫晶片與特定波長光線,進行3D細胞培養。利用細胞培養實驗與微流道攝影技術等,提供生醫研究人員快速篩檢、驗證實驗狀態;可以進一步降低實驗所需時間與成本,且可追蹤不同細胞隨時間的變化。
This work can use corresponding biomedical chips and light of specific wavelengths for 3D cell culture. Utilizing cell culture experiments and microfluidic photography technology to provide biomedical researchers with rapid screening and verification of experimental status. The time and cost required for experiments can be further reduced, and changes in different cells over time can be tracked.
使用連線網際網路而具有雲端服務之物聯網顯微鏡,進行動態細胞識別與即時遠端顯微鏡操作。
Biological Laboratory Cloud Microscope. First Generation (1st) System based on Remote Presentation
本作品可以使用多用途之人工智慧影像識別模組和相應生醫晶片進行動態細胞識別與3D細胞培養。可以在時間線上記錄和識別細胞影像。利用標準識別空間、細胞培養主實驗區、微流道辨識標記、外圍觀察設備等,透過標準識別空間達到實驗一致性,人工智慧影像辨識模組識別位於動態環境與時間之細胞。透過關於時間而識別的位置、大小、物理或電化學反應狀態,可以進一步確定細胞狀態。且可追蹤3D培育之細胞隨時間的變化。
This work can use multiple artificial intelligence image recognition modules and corresponding microfluidic chip for dynamic cells recognition. Images of cell can be recorded and identified on the timeline. This work can use multiple artificial intelligence image recognition modules and corresponding consistent benchmark such as microfluidic identification marks, etc. to identify dynamic cells through the cell status pre-trained in the artificial intelligence image recognition module. Through the identified position, size, physical or electrochemical reaction state, the cell status can be further determined with consistent benchmark. Therefore, images can be recorded and identified on the timeline from the initial state of observation to the final state of a specific cell. Tracking changes in the same cell over time will help compare parameter calculations with the degree of cell death.
微型多重檢測晶片、多重檢測設備及其檢測方法
基於本團隊之雲端運算平台與人工智慧運算環境,可以建構多用途之人工智慧影像識別暨大數據分析模組;生醫資訊研究人員可以自選所需之預建立人工智慧模組進行生醫影像智慧辨識與數據統計,也可以輸入大數據提供人工智慧模組進行資料探勘與分析;或是自行建構、訓練出所需要的人工智慧特定功能模組,進行辨識或預測
Based on the team's cloud computing platform and artificial intelligence computing environment, multi-purpose artificial intelligence image recognition and big data analysis modules can be constructed. Biomedical information researchers can select the required pre-built artificial intelligence modules for intelligent identification and data statistics of biomedical images. You can also input big data to provide artificial intelligence modules for data exploration and analysis; or you can build and train the required artificial intelligence specific function modules for identification or prediction.
利用常見的各式遊戲建構軟體,設計出供生醫產業工作所需要遊戲學習劇本,讓工作人員或是學生透過遊戲精進學識與技術
Utilize various common game construction software to design game learning scripts required for work in the biomedical industry. Allowing staff or students to improve their knowledge and skills through games