Comparing Piezoresistive Substrates for Tactile Sensing in Dexterous Hands

Rebecca Miles, Martin Matak, Mohanraj Devendran Shanthi, Darrin Young, and Tucker Hermans

Abstract: While tactile skins have been shown to be useful for detecting collisions between a robotic arm and its environment, they have not been extensively used for improving robotic grasping and in-hand manipulation. We propose a novel sensor design for use in covering existing multi-fingered robot hands. We analyze the performance of four different piezoresistive materials using both fabric and anti-static foam substrates in benchtop experiments. We find that although the piezoresistive foam was designed as packing material and not for use as a sensing substrate, it performs comparably with fabrics specifically designed for this purpose. While these results demonstrate the potential of piezoresistive foams for tactile sensing applications, they do not fully characterize the efficacy of these sensors for use in robot manipulation. As such, we use a high density foam substrate to developed a scalable tactile skin that can be attached to the palm of a robotic hand. We demonstrate several robotic manipulation tasks using this sensor to show its ability to reliably detect and localize contact, as well as analyze contact patterns during grasping and transport tasks.

FullSweep.mp4

Supplemental Videos of Reaching Towards Objects

Links to Sensor Construction Materials