Goršič, M., Song, Y., Dai, B., & Novak, D. (2021). Evaluation of the HeroWear Apex back-assist exosuit during multiple brief tasks. Journal of Biomechanics, 126, 110620.
Bennett, S. T., Adamczyk, P. G., Dai, F., Wehner, M., Veeramani, D., & Zhu, Z. (2022, December). Field-based assessment of joint motions in construction tasks with and without exoskeletons in support of worker-exoskeleton partnership modeling and simulation. In 2022 Winter Simulation Conference (WSC) (pp. 2463-2474). IEEE.
Slaughter, P. R., Rodzak, K. M., Fine, S. J., Ice, C. C., Wolf, D. N., & Zelik, K. E. (2023). Evaluation of US Army Soldiers wearing a back exosuit during a field training exercise. Wearable Technologies, 4, e20.
Jelti, Z., Lebel, K., Bastide, S., Borgne, P. L., Slangen, P., & Vignais, N. (2021). Effect of using a physical assistance device for movements involving trunk bending. bioRxiv, 2021-02.
Thomas, A. L. B. O. U. Y., Kévin, L. E. B. E. L., & Bérenger, L. T. (2022). Effects of a passive back assistance exoskeleton for load carrying and trunk bending tasks.
Refai, M. I. M., Moya-Esteban, A., van Zijl, L., van der Kooij, H., & Sartori, M. (2024). Benchmarking commercially available soft and rigid passive back exoskeletons for an industrial workplace. Wearable Technologies, 5, e6.
Schnieders, J., Van Harmelen, V., & Wagemaker, S. J. (2023). The effect of the Laevo FLEX exoskeleton on muscle activity and perceived exertion. Laevo Exoskeletons BV, EX Rijswijk, The Netherlands, Tech. Rep., Apr, 2023-04.
Dooley, S., Kim, S., Nussbaum, M. A., & Madigan, M. L. (2024). Occupational arm-support and back-support exoskeletons elicit changes in reactive balance after slip-like and trip-like perturbations on a treadmill. Applied Ergonomics, 115, 104178.
Schmalz, T., Colienne, A., Bywater, E., Fritzsche, L., Gärtner, C., Bellmann, M., ... & Ernst, M. (2022). A passive back-support exoskeleton for manual materials handling: Reduction of low back loading and metabolic effort during repetitive lifting. IISE Transactions on Occupational Ergonomics and Human Factors, 10(1), 7-20.
Raghuraman, R. N., Barbieri, D. F., Aviles, J., & Srinivasan, D. (2024). Age and gender differences in the perception and use of soft vs. rigid exoskeletons for manual material handling. Ergonomics, 1-18.
Kazemi, Z., Park, J. H., & Srinivasan, D. (2023, September). Differences in kinematics and resulting lumbar spinal forces during repetitive lifting tasks: Simulation versus estimation of the effects of wearing a back-support exoskeleton. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 67, No. 1, pp. 842-844). Sage CA: Los Angeles, CA: SAGE Publications.
Schwartz, M., Desbrosses, K., Theurel, J., & Mornieux, G. (2022). Using passive or active back-support exoskeletons during a repetitive lifting task: influence on cardiorespiratory parameters. European Journal of Applied Physiology, 122(12), 2575-2583.
Walter, T., Stutzig, N., & Siebert, T. (2023). Active exoskeleton reduces erector spinae muscle activity during lifting. Frontiers in Bioengineering and Biotechnology, 11, 1143926.
Reimeir, B., Calisti, M., Mittermeier, R., Ralfs, L., & Weidner, R. (2023). Effects of back-support exoskeletons with different functional mechanisms on trunk muscle activity and kinematics. Wearable Technologies, 4, e12.
Back to homepage -