Innovation and solutions in evidence science

Based on a systems model for real world evidence generation, GoodScience is promulgating methods for optimizing the integrity and value of information in the research process. Research with observational data (without formal experimental design and randomization) is conceived as an information and communication technology problem: the accurate and efficient transmission of information through a channel of communication. By identifying the numerous sources of entropy (information loss or distortion) in the health research process and applying the best solution set we can create a more efficient and productive evidence generation system. This has very pragmatic implications for optimizing cost efficiency and value generation for any evidence generation endeavor; and ultimately, for outcomes for patients.

Current foci:

• GoodScience is designing a collaboration platform for causal knowledge development and curation to support optimal practice in statistical modeling.

• Consulting and advisory boards

• Thought leadership communicated in social media blog posts.

Examples include:

Value-based Healthcare: analytics may be leaving value on the table

Why 'Why' Matters: "The Book of Why"

In Machine Learning Predictions for Health Care the Confusion Matrix is a Matrix of Confusion

Navigating Statistical Modeling and Machine Learning

Observational Data Analysis (ODA) material

Variation in Practice material

Value of Information Methods for Evidence Generation Strategies

Other miscellaneous work examples

Innovation and Strategy