Razones y relaciones proporcionales 7.RP

Analizan las relaciones de proporción y las utilizan con el fin de resolver problemas matemáticos y del mundo real.

1. Calculan razones unitarias relacionadas con proporciones de fracciones, incluyendo relaciones de longitud, áreas y otras cantidades medidas en unidades similares o diferentes. Por ejemplo, si una persona camina 1/2 milla en 1/4 de hora, calculan la tasa de unidad como la fracción completa de 1/2 ÷ 1/4 millas por hora, que equivale a 2 millas por hora.

2. Reconocen y representan relaciones de proporcionalidad entre cantidades.

a. Deciden si dos cantidades se encuentran en una relación proporcional, por ejemplo, al evaluar relaciones equivalentes en una tabla o al trazar una gráfica en un plano de coordenadas y al observar si la gráfica es una línea recta desde su origen.

b. Identifican la constante de proporcionalidad (razón unitaria) en tablas, gráficas, ecuaciones, diagramas, y descripciones verbales de relaciones de proporcionalidad.

c. Representan las relaciones de proporcionalidad mediante ecuaciones. Por ejemplo, si el costo total t es proporcional a la cantidad n de cosas compradas al precio constante p, la relación entre el costo total y la cantidad de cosas puede expresarse como t = pn.

d. Explican lo que un punto (x, y) en la gráfica de una relación proporcional significa en términos de la situación, prestando atención especial a los puntos (0, 0) y (1, r) en donde r es la razón unitaria.

3. Utilizan relaciones de proporcionalidad para solucionar problemas de pasos multiple, sobre razones y porcentaje. Ejemplos: interés simple, impuestos, márgenes de ganancias o rebajas, propinas y comisiones, honorarios, aumentos y disminuciones en los porcentajes, porcentaje de errores.