การทำนายข้อมูลด้วย MLPClassifier (Test)
..
👉..
# New samples to test
# Load data from CSV
df_test = pd.read_csv('electric_signal_data_test.csv')
features_test_ture = df_test.iloc[:, :-1].values # Features
# Separate features and labels
features_test = df_test.iloc[:, :-1].values # Features
labels_test = df_test.iloc[:, -1].values # Labels
# Standardize features
scaler_test = StandardScaler()
features_test = scaler_test.fit_transform(features_test)
# Encode labels
label_encoder_test = LabelEncoder()
labels_encoded_test = label_encoder_test.fit_transform(labels_test)
# Standardize new data
new_samples_scaled = scaler_test.transform(features_test)
# Predict class
predictions = model.predict(features_test)
# Print predictions for new samples
for i, sample in enumerate(features_test_ture):
print(f"Sample {sample} is predicted to be class {label_encoder_test.inverse_transform([predictions[i]])[0]}")
y_true = labels_encoded_test
y_pred = predictions
labelss = [2, 1, 0]
# Generate confusion matrix
cm = confusion_matrix(y_true, y_pred, labels=labelss)
# Print confusion matrix
print("Confusion Matrix:\n", cm)
# Print accuracy
accuracy = accuracy_score(y_true, y_pred)
print(f"Test Accuracy: {accuracy:.4f}")
# Display confusion matrix as a plot
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labelss)
disp.plot(cmap=plt.cm.Blues)
# Set the title and show the plot
plt.title('Confusion Matrix')
plt.tight_layout()
plt.show()
เมื่อรันโปรแกรมแล้วผลลัพท์ที่ได้