การตรวจสอบคุณสมบัติของภาพ:
การตรวจสอบคุณสมบัติของภาพ (สามารถเข้าไปดาวน์โหลดไฟล์ภาพได้จาก >> คลิกเพื่อดาวน์โหลด)
import cv2
# read the input image
img = cv2.imread(r'C:\Users\user\Desktop\bottle\1.jpg')
# image properties
print("Type:",type(img))
print("Shape of Image:", img.shape)
print('Total Number of pixels:', img.size)
print("Image data type:", img.dtype)
# print("Pixel Values:\n", img)
print("Dimension:", img.ndim)
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
การปรับขนาดภาพ:
การปรับขนาดภาพจากกล้อง หรือจากไฟล์ภาพ .jpg หรือ .png (สามารถเข้าไปดาวน์โหลดไฟล์ภาพได้จาก >> คลิกเพื่อดาวน์โหลด)
import cv2
img = cv2.imread(r'C:\Users\user\Desktop\bottle\1.jpg')
print('Original Dimensions : ',img.shape)
width = 700
height = 550
dim = (width, height)
# resize image
resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
print('Resized Dimensions : ',resized.shape)
cv2.imshow("Resized image", resized)
cv2.waitKey(0)
cv2.destroyAllWindows()
การตัดภาพ (ROI):
import cv2
img = cv2.imread(r'C:\Users\user\Desktop\bottle\1.jpg')
crop = img[50:100, 20:200]
cv2.imshow("Image", img)
cv2.imshow("Image_crop", crop)
cv2.waitKey(0)
cv2.destroyAllWindows()
การหาค่าเฉลี่ยของสีภาพ:
import cv2
image = cv2.imread(r'C:\Users\user\Desktop\bottle\1.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imshow("Image", image)
cv2.imshow("Gray", gray)
mean_color = cv2.mean(image)
print(mean_color)
mean_gray = cv2.mean(gray)
print(mean_gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
การแปลงภาพสีเป็นภาพระดับเทา:
import cv2
image = cv2.imread(r'C:\Users\user\Desktop\bottle\1.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imshow("Image", image)
cv2.imshow("Gray", gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
การหาขอบภาพ:
import cv2
image = cv2.imread(r'C:\Users\user\Desktop\bottle\1.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
edged = cv2.Canny(gray, 1, 100)
cv2.imshow("Image", image)
cv2.imshow("Gray", gray)
cv2.imshow("Edged", edged)
cv2.waitKey(0)
cv2.destroyAllWindows()
การตรวจจับสีของวัตถที่ต้องการ: ดาวน์โหลดภาพ
📌การตรวจจับสีน้ำเงิน
import cv2
import numpy as np
# Load the image
image_path = r"C:\Users\user\Desktop\color.JPG"
image = cv2.imread(image_path)
# Convert to HSV color space
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Define the lower and upper bounds for red color in HSV
lower = np.array([100, 120, 120])
upper = np.array([140, 255, 255])
# Create masks for both red ranges
mask1 = cv2.inRange(hsv, lower, upper)
# Combine masks
blue_mask = mask1
# Apply mask to extract red color
blue_mask = cv2.bitwise_and(image, image, mask=blue_mask)
# Display results
cv2.imshow("Original Image", image)
cv2.imshow("Blue Color Detection", blue_mask)
cv2.waitKey(0)
cv2.destroyAllWindows()
📌การตรวจจับสีเขียว
import cv2
import numpy as np
# Load the image
image_path = r"C:\Users\user\Desktop\color.JPG"
image = cv2.imread(image_path)
# Convert to HSV color space
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Define the lower and upper bounds for red color in HSV
lower = np.array([40, 120, 120])
upper = np.array([80, 255, 255])
# Create masks for both red ranges
mask1 = cv2.inRange(hsv, lower, upper)
# Combine masks
blue_mask = mask1
# Apply mask to extract red color
blue_mask = cv2.bitwise_and(image, image, mask=blue_mask)
# Display results
cv2.imshow("Original Image", image)
cv2.imshow("Blue Color Detection", blue_mask)
cv2.waitKey(0)
cv2.destroyAllWindows()
📌การตรวจจับสีแดง
import cv2
import numpy as np
# Load the image
image_path = r"C:\Users\user\Desktop\color.JPG"
image = cv2.imread(image_path)
# Convert to HSV color space
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Define the lower and upper bounds for red color in HSV
lower_red1 = np.array([0, 120, 120])
upper_red1 = np.array([10, 255, 255])
lower_red2 = np.array([170, 120, 120])
upper_red2 = np.array([180, 255, 255])
# Create masks for both red ranges
mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
# Combine masks
red_mask = mask1 + mask2
# Apply mask to extract red color
red_detected = cv2.bitwise_and(image, image, mask=red_mask)
# Display results
cv2.imshow("Original Image", image)
cv2.imshow("Red Color Detection", red_detected)
cv2.waitKey(0)
cv2.destroyAllWindows()
📌การตรวจจับสีดำและแปลงเป็นภาพ Binary
import cv2
import numpy as np
# Load the image
image_path = r"C:\Users\user\Desktop\color.JPG"
image = cv2.imread(image_path)
# Convert to HSV color space
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Define the lower and upper bounds for black color in HSV
lower_black = np.array([0, 0, 0]) # Lower bound for black
upper_black = np.array([180, 255, 50]) # Upper bound for black
# Create mask for black color (binary image)
black_mask = cv2.inRange(hsv, lower_black, upper_black)
# Invert the mask so that black objects appear black (0) and the background is white (255)
binary_result = 255 - black_mask
# Display results
cv2.imshow("Original Image", image)
cv2.imshow("Binary Black Object", binary_result)
cv2.waitKey(0)
cv2.destroyAllWindows()