AMUSEMENT PARK PHYSICS‎ > ‎TEAM 1‎ > ‎

### TESTING

 Data:Cut the RopeFrequency = 1.1 HzMass of Candy = .818 kgLength of Rope = .28 mHeight (when pulled back) = .01 mRobot Unicorn AttackMass of Horse = .03 kgRadius = .12 mFrequency = .6 HzAnalysis:Cut the RopePeriod =                                 T = 2 (π) √ (.28/9.8)                T = 1.06 secondsVelocity =                                                                                    √2gh = v                                .44 m/s = v              Potential Gravitational Energy =                                                PEg = .818 (9.8) (.01)                PEg = .08 J                Kinetic Energy =                                     KE = 1/2 (.818) [(.44)^2]                KE = .08 J                Robot Unicorn AttackFn =                 Fn = Fg = mg                Fn = (.03)(9.8)                Fn = .294 NFg =                     Fg = Fn                Fg = .294 N       Period =                                                    T = 1/.6                T = 1.67 secondsVelocity =                  V =                  V = 2(π)(.12)/1.67                 V = .45 m/sFc =                                Fc = (.03)[(.45)^2]/.12                Fc = .05 NAc =                                 Ac = [(.45)^2]/.12                Ac = 1.69 m/s^2Conclusion:Cut the Rope                On the simple pendulum, the period equation cannot be used unless the angle of release is 10 degrees or under. We accommodated and only dragged the candy back to 10 degrees, instead of our previously planned 90 degrees. While our facts and figures are correct, they are unrealistically low. This ride was designed to have a greater angle of release than we used in order to use the formula. Although, in reality, Cut the Rope would be a more high-thrill attraction, for our purposes, we had to downgrade it to low adventure.                 This ride exhibits energy well. With PEg at the drop point and KE at the bottom of the arc, Cut the Rope is a perfect example of the conservation of energy. We decided, in order to obtain a more accurate formula, to have the resting position of the candy as 0 height.  This means that the highest point on the ride, which can be a source of error, is .01 meters.  Other sources of error may include discrepencies in degree measure and timing, and the fact that the base of the ride slightly oscillates with the ride. Robot Unicorn Attack             In the circular motion ride, we measured the normal force, gravitational force, centripetal force, velocity, centripetal acceleration, and the period. The normal and gravitational forces are not good representations of the physics involved in circular motion, because they don't affect the forces in the horizontal, which is where the circular motion is taking place. Despite their irrelevancy, we measured them accurately. We measured the centripetal force, centripetal acceleration, and the velocity using predetermined equations, and they represent the physics of circular motion very well.            Some possible sources of errors are a discrepency of the velocity in which we pushed the carousal and the minute differece in the weight between the horses, due to the decorations.