Using new and old approaches to study bovid systematics and evolution across Eurasia

Alan Cooper1, Kefei Chen1, Beth Shapiro2 

1 The Australian Centre of Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, North Terrace Campus, SA-5005 Adelaide, Australia

2 Department of Biology, The Pennsylvania State University, 326 Mueller Laboratory, University Park PA 16802, USA 

Ancient DNA studies of bovid remains from Europe have detected four main taxa: Bison bonasus (the European Bison); Bison priscus (Steppe bison), Bos primigenius (Aurochs); and early Bos taurus (Daisy). Studies of bones recovered from caves in the Urals and Caucasus, and from material dredged from the North Sea, have revealed a fifth European bovid – the Caucasus bison. Previously recognised only as a sub-species of European bison, this taxon appears to represent a separate species, with more genetic diversity than Beringian populations of Bison priscus, suggesting a long evolutionary history and stable population size. It has changed ecological dominance with Bison priscus at several points in the Pleistocene, which appear to be related to climatic and environmental change.

We have been using emulsion PCR and high-throughput hybridisation-based SNP screening systems that can simultaneously analyse 50,000 bovid SNPs to explore the genomic evolution of ancient bovids during the Pleistocene and subsequent domestication. We have been concentrating on pre-domestic Bos taurus specimens, as well as representatives of the other Pleistocene bovid species. This approach holds enormous promise for fine-scale temporal analyses of evolution in response to climate and environmental change, as well as archaeology and domestication.