2017.05

論保其壽的渾圓圖

posted May 29, 2017, 9:10 PM by 陳宏賓   [ updated Jun 23, 2017, 4:07 AM by 劉孟 ]


        今年四月初應中華科技史學會邱韻如理事長邀請,在台北市立圖書館總館 11 樓研習教室演講「洛書的後裔」。40 餘年前我首度驚艷於清朝保其壽在立體上的精彩標號,之後嘗試解密他的構造法,並推廣成為現代圖論裡的研究課題。當日承蒙保其壽後人清大退休教授徐統帶來珍藏《碧奈山房集》上、下冊,是我第一次目睹保其壽的原作刻本。感謝徐教授惠贈影本一套,使我得以拜讀在〈增補算法渾圓圖〉之外的作品。從保其壽寫的〈自序〉可看出,他真是一位狷介之士。徐教授還惠贈手製「六道渾天圖」紙模型,其上畫出保其壽創作的標號,也是我至今只能讚嘆而未能理解製法的極品。趁此機會,將多年前發表於
《第一屆科學史研討會彙刊》的舊文,重新分享給喜愛數學的讀者。

保其壽後人清大退休教授徐統惠贈之手製「六道渾天圖」紙模型

保其壽的〈自序〉


ㄧ、縱橫圖淵源概述        
        
            在組合數學中有一種圖形,西方多稱為 magic square,而國人採日譯常名為幻方魔方陣者,就是將自然數 1,2,3,…,n 排入長寬均為 n 的方陣中,使得每行每列與兩條主對角線的和均為一定數,該定數很容易可知必為 n(n2 + 1) / 2。世界上最早見諸記載的魔方陣是下者:

 4   9   2 
 3   5   7 
 8   1   6 

        第一世紀後半成書的《大戴禮記》在《明堂篇》述及「二九四,七五三,六一八」,應該就是指該方陣,也似乎因此而有《九宮算》的稱呼法。第六世紀後周人甄鸞注《數術記遣》「九宮算五行參數稍加循環」一段時,明言「九宮者,二四為肩,六八為足,左三右七,戴九履一,五居中央。」可確定是該方陣。

         到宋朝時因為方士的牽強扭合,以及儒者的順從緣飾,就把九宮圖附會到「河圖」「洛書」上,其實「河圖」與「洛書」到底是什麼,根本無法考察,但是劉牧《易數鉤隱圖》便說九宮圖是河圖,很多人也就因襲他的說法,最後是朱熹反認九宮圖為洛書,名稱才固定下來。到清聖祖康熙敕編《數理精蘊》時,開宗明義便說「粵稽上古,河出圖,洛出書,八卦是敘,數學亦於是乎肇焉。」更是把一個簡簡單單的圖形籠罩上無比的神祕色彩。

         對於不懂數學的人,這種圖形也許只引起神秘感,但是數學能力強的人,便會探求它的構造原理。

        西元一二七五年宋朝大數家楊輝寫成《續古摘奇算法》便有《縱橫圖》一節,並且首先說明洛書的作法,無非是「九子斜排,上下對易,左右相更,四維挺出。」根據這種客觀分析的方法,楊輝又造了好多其他的方陣,以及非方形但仍有定和現象的別類圖形,所以「縱橫圖」這個稱呼所含的東西,比「魔方陣」更為廣泛。

        楊輝之後論及縱橫圖主要有,宋朝丁易東的《大衍索隱》;明朝程大位《算法統宗》(西元一五九三年);清朝方中通的《數度衍》(西元一六六一年);以及清朝張潮的《心齋雜俎》(西元一六七○元)。除了張潮較有創意外,其他大多因襲舊說。清朝梅玨成(西元一六八一年一~西元一七九三年)著《增刪算法統宗》十一卷(西元一七六○年),因為河圖洛書神祕色彩過重,又無多大實用價值,就把各個縱橫圖都刪掉了。因為梅的書使用流通很廣,致使縱橫圖的發展幾乎完全中斷。反倒是《算法統宗》傳人日本,促成日本數學家研究縱橫圖的興趣。譬如礒村吉德(?一西元一七○九年),關孝和(?一西元一七○八年)都有創作,特別是一些圓形的縱橫圖。不過這些創作在數學內容的難度上,並沒有顯著的提昇。基本上把 1, 2, 3, ……, n 配成數對 (1,n), (2, n-1), (3, n-2) ……,每一對的和均為 n+l,再適當的把這些數對安置在一些圖形上,便得到非方形的縱橫圖。

 二、保其壽其人其文

        中國傳統縱橫圖的製作在停滯近二百年後,到清末保其壽有一次意義深刻的創新,因為保其壽並不是一位專業數學家,他的工作似乎沒有得到應有的認識與肯定。

        雖然相去保其壽生存的時代也不過百年,但是今日要搜求他的事蹟已很困難。所見記載他生平最多的《南通縣圖志》,也不是一般圖書館收藏中能有的。根據該書卷四的說法:

「保其壽,字似仙,廩貢生。為人傲倨,不肯禮下人,惡紳官之為暴鄉閭,每面折之不能忍,絕不與交游。慨然曰:『若豈生而性惡,徒以誘於慾利然耳,吾絕科第不為,庶足以保吾天乎。』故自中年後遂不復應試。然性喜詼嘲,為詩歌小品,多異趣。閒作山水,恣肆淋漓,顧一歲中亦僅三四作,或請以金,輒謝。解拳技、醫、奕、絲、竹、篆刻之屬,尤喜天文、算術,為有益於實用。每歎謂:『泰西學理吾何由閉關謝之,使中國而不亡,則科舉當不永矣。』故嘗擇子弟才者,授以九數、通考、天元、借根之法。其闢風氣蓋最先,卒年六十四。著書已刻者,詞二卷,詩四卷,游戲算學一卷。

始,其壽少失父母,遂罷讀,去學賈,不成。會洪楊亂熾,乃獨奮身投軍。為步兵主者,頗怪之,引以為書記,非其意所好也。久之遂棄,歸則壹留心於文字。顧平生未嘗為制舉業,而奇窮不能自聊。或遂強之一試於有司,竟列學官弟子,卒以此終其身。然既已鬱不一,拖則亦往之。著之於詩文,發為嬉笑怒罵,以玩世故,亦無能自罔於恆俗也。」

        今日所見保其壽有關縱橫圖的作品,只有《增補算法渾圓圖》一文,收在自刊本《碧奈山房集》內,此文是否就是《南通縣圖志》中所說的「游戲算學一卷」未便確定。但在李儼《近代中算著述記》詳細的著作目錄 ,保其壽項下也只有這一篇文章,很可能即使保其壽另有創發,也未曾著成文字。

 徐統教授珍藏的《碧奈山房集》上、下冊原作刻本       


      《碧奈山房集》共有上下二冊,《增補算法渾圓圖》刊於下冊,下冊首頁請見圖一。以往研究中國數學史的學者,似乎只有李儼對這篇文章特別留意過,在《中算家之縱橫圖 (Magic Squares) 研究》一文 註2 ,他相當忠實的大量引用了原著。通過他的著作,使人至少有一個表面的印象,就是保其壽作了一些立體上的縱橫圖。但是李儼對這些圖的構造原理完全未曾考察,也就給不出恰當的評價。因為收藏《碧奈山房集》的地方非常罕見,以後論及保其壽的著作,基本上都由李儼文中取材,像李約瑟、藍麗蓉都未能深究保其壽貢獻的價值 註3 。李儼論文的另一項缺失是,他沒有告訴讀者到底是不是把原文全部引用了,使人在瞭解上發生疑難時,無法判定是原作者的疏漏,或是李儼省略了一些自己感覺無關緊要的詞句與圖形。此外李儼把原圖改繪為使用阿拉伯數碼的現代形式,也令人難以掌握保其壽原來的風格。
            
        作者近期才獲得《增補算法渾圓圖》的影本,本文想從原著中分析出製作這些縱橫圖可能運用的原理,也在附錄中複製公開保其壽的全文,以方便更多人欣賞與研究這些巧妙的心智結晶。凡引用附錄諸頁時,我們用(附頁1)(附頁2)等,以別於正文中插圖的(圖一)(圖二)等編號。



三、原文研究

1.序文
            
        保其壽在原序中說:「《心齋雜俎》有算法二十五圖,張山來自云《算法統宗》十有四圖之外者,推而演之當不盡於此云云。《統宗》余未經見,惟山來所演皆平圖,不知立方與渾圓尤為可喜,其源雖權輿洛書,其巧實不可思議,當是天地間合有此一種理數,特假手山來與余耳。」

        張山來就是張潮,他在《心齋雜俎》卷下《算法圖補》中說:「《算法統宗》所載十有四圖,縱橫斜正,無不妙合自然,有非人力所能為者,大抵皆從洛書悟而得之,內惟百子圖於隅徑不能合,因重加改定,復以意布雜圖,亦皆有自然之妙,乃知人心與理數相為表裡,引而伸之,當猶有不盡於此者,姑即其已然者列於後。」《算法統宗》的縱橫圖,基本上是承傳了楊輝的創作,但通過張潮的文章,只能見到一個百子圖。所以保其壽的注意力一開始便沒有受限於方陣上的縱橫圖,而大膽向立體上發展。因此他選擇了「渾圓圖」的稱呼,並且對自己的創作頗感得意。

2.圖形表示法

        保其壽的渾圓圖是在立體的頂點、邊線與面上,標以1,2,3,......,n 諸數,使得具相同的邊數的面,其上諸標數的和為一定數。諸面若共用一邊或一頂點,則該邊與該頂點上的標數,在檢驗定和現象時,由各面重複使用。這種標數方法稱為「定和標法」

        (圖二)

        保其壽先處理了五個正多面體:正四面體,正六面體,正八面體,正十二面體。(見圖二)表現的方法採用渾圖與平圖兩種。所謂渾圖也就是一般的立體示意圖,而平圖就是把多面體當作是卡紙製成,再沿某些邊切開後把各面攤平。在平圖的表示法中,某些切開線上的標數會重複出現。

        保其壽最突出的創作是「六道渾天圖」,就是在球面上交錯纏上六條紙帶,把紙帶與紙帶的交點當作頂點,頂點與頂點間的紙帶當作邊線。(見附頁23)如此頂點、邊線與面的相關位置,與所謂的十二并二十面體(圖三)完全一樣。該立體有十二個五邊形面,二十個三邊形面,因此有兩種不同的定和。

 (圖三)

3.正六面體
        
        附頁4是互補數對 (1,8), (2,7), (3,6), (4,5) 的巧妙安排。因為只有頂點有標數,我們稱其為「頂點型標法」。原文所謂「八子作二十四子用」,就是每個頂點被三個面使用,便相當於有二十四個標數。

        附頁5也是互補數對的安置法,因為只有邊線有標數,我們稱其為「邊線型標法」。

        附頁6頂邊中間的標數二,應該是二十,本頁最要緊的一句話是「合前二法成此」,也就是說前兩個圖既然各面已具有定和,則把它併成一圖,各面標數和仍然相等。但為了使最終的標數是 1, 2, 3, ……, n,須把附頁5各數加8,因為各面均為四邊形,如此只使原來的定和增加24。總之我們可以說保其壽運用了「疊合法原則」,從舊的渾圓圖造出新的渾圓圖。

        附頁7是把互補數對加在附頁4的邊線上,自然仍舊保有定和現象,我們可以說保其壽運用了「加互補數對原則」創造新渾圓圖。

4.正四面體
        
        附頁8是利用互補數對的邊線型標法,中心三線的交會處可看作是正四面體的頂,全圖便是由頂向底面直視的狀況。
        
        附頁9是把正四面體攤平的情形,三個標數一的點,其實都是同一頂點。此頁所說:「凡三角必中心獨用一子」,表示保其壽運用了第三種製作渾圓圖的原則。如果我們把中心各種標數去掉,則原正四面體有一個頂點型標法,其各面標數和分別為6,7,8,9,是一組連續的數。顯然只要在各對應面從大到小補上另一串數,便可得到定和現象。像這種在立體上標數,而使各面和成為一組連續數的方法,我們稱為「連續和標法」,顯然連續和標法比定和標法更為基本。
       
        附頁10的標法如果從立體上看,便知與前頁完全相同,只是所謂「形同馬射皮毬」,不知做何解釋。
        
        附頁11中保其壽說:「此圖極費經營」是為什麼呢?因為正四面體每一頂點均與其他三點有邊線相連,因此用1,2,3,4標各項點的方法是唯一的,而且是一個連續和標法。如果想把5,6,……,10標在邊上以便整體成為定和標法,則邊線標數必須構成另一個能與頂點標數連續和相搭配的連續和標法。因為邊線不多,利用逐一嘗試的方法,可查知並無連續和標法的邊線型標法,所以保其壽說:「如以一二三四居角,餘用六子,斷不成章。」至於他接著說:「及用十六子以一二三四歸角,四分之又有畸零,故用一三五七。」就是求各面和數的總和時,頂點標數用三次,邊線標數用兩次,但 (1+2+3+4) x 3 $+ (5 + 6 + 7 + \cdots + 16) \times 2 = 282$,一共四個面平分,不幸4不能整除282,所以他才把一三五七標在頂點,而得到定和標法。由保其壽的這些話,我們相信他在嘗試標數之前,會用整除的性質做一些推斷,然後選擇有希望的數入手。
        
        附頁12展示了保其壽運用的第四種原則,也就是如果已經有一渾圓圖是用 $l,2, \cdots , n$ 標數,則把 k 換為 n+1-k 即刻得到另一個渾圓圖,所以保其壽說:「諸圖均可知此,即前顛倒易之。」

5.正八面體

        附頁3的兩個圖形其實是同一種標數法,而且頂點標數構成一個連續和標法。

  附頁13中「以一換十八,二換十七,逐子相易即成每面六十六數」,明白的敘述了「顛倒標數原則」。此頁下方「以十三換一亦可,一即換七」是另一種換數方法,也就是圖中l到12逐-換為7到18,而13到18逐一換為1到6,很容易驗證改換後仍保有定和現象。

  附頁14是把互補數對安置在邊線上,如果把它與附頁13合併,則仍然是定和標法。但若想在附頁13的每邊再加一數,也就是把9到30標在各邊,卻不能保有定和現象,因為19 + 20 +……+ 30 = 394不能被8整除。此頁所謂「一○九數」「一百二十七數」應改為「二三一數」「二四九數」。又本頁所用數碼今人多半不能閱讀,圖四複製李儼的改繪以便對照。

(圖四)

6.正二十面體

        重繪附頁15為圖五。原文漏印在9與15之間的兩個數,它們應該是22與50。

(圖五)

        附頁16下方在2與70之間,原文印的「廿四」有誤,應該是「八十」。

7.正十二面體

        附頁17的頂點標數構成連續和標法。

  附頁18不僅畫出正十二面體的立體圖,而且說:「惟積二十子三倍之,不合十二除,故用三十二子。」也就是光標頂點是無法達到定和現象,因此才有附頁17的連續和標法。

  附頁19是很有意思的創作,一方面把在後面的諸標數倒印,(請與圖六對照),另方面各項點標數與附頁17完全相同。因此當把各頂點標數去掉,再把各邊標數減20,就會得到一個邊線型的連續和標法。而這個邊線型標法可併入附頁17的頂點型標法,而得到定和現象。如此一對連續和標法稱為互補,這種「互補連續和原則」的運用,在介紹附頁9時已經論及。

(圖六)

8.十二并二十面體

        附頁23說明如果只用1到30標各項,每一頂點均被兩個三邊形與兩個五邊形共用。但無論考慮三邊形或五邊形,都不滿足整除性,因此頂點型定和標法不存在。

  附頁20同時標頂點與邊線,終於達成定和。(請對照圖七)不過保其壽如何作出這麼複雜的標法,實在令人費解。

(圖七)

        附頁21的標法是從附頁20導來:先把每一頂點加60,再把每一邊線減30,最後取其鏡像反轉便得。

  附頁22是把顛倒標數原則用到附頁20而得,不過在左腰部「七九」與「七七」之間漏植了「三六」。

  從前面的研究分析中,可看出保其壽在製作渾圓圖時,至少有意識的運用了四種原則:

  (一)兩個定和標法的疊合。 
  (二)添加互補數對。 
  (三)兩個互補連續和漂法的疊合。 
  (四)顛倒 k 與 n+1-k   

  十九世紀的西方數學已經非常發達,在數學主流方面,中國數學家實在落後太遠。但是組合數學在十九世紀尚未成型,只有若干獨立零星的結果。雖然西方也有人用心於魔方陣的創作,但像保其壽在立方體上如此複雜的定和標數卻不曾見,我們應該肯定他的貢獻的歷史價值。

  保其壽的工作也有現代的意義,在現代組合數學的圖論 (Graph Theory),可考慮平面圖網的標數問題,也有各種有趣的定和或連續和現象。作者在這方面的創作已發表於他處 註4 ,不再重複細述。圖八是作者發現的正二十面體頂點型連續和標法,這是保其壽未能發現的,至於它是否有互補的邊線型連續和標法,則作者尚未能確定。

(圖八)

註釋
1.《近代中算著述記》收於李儼著《中國算學史論叢》,一七九頁至四三頁,正中書局,民國六四年台三版。
2.《中算家之縱橫圖(Magic Squares)研究》收於李儼著《中算史論叢》,第三卷,五七頁至一一○頁,上海商務印書館,民國二四年版(台灣商務印書館重新翻印時,把作者名字改為李子嚴)。
3.Joseph Needham, Science and Civilisation in China, Volume 3, p.60, Cambridge University Press, 1959. Lam Lay Yong, A Critical Study of the Yang Hui Suan Fa, p.32l-p.322, Singapore University Press, l977.
4.Ko-Wei Lih, On magic and consecutive labelings of plane graphs, Utilitas Mathematica, 24(1983), p.165-p.197.

延伸閱讀
介紹保其壽和他的〈增補算法渾圓圖〉,徐統,中華科技史學會學刊第 13 期 (2009 年 12 月) 。
〈論保其壽的渾圓圖〉,李國偉,《第一屆科學史研討會彙刊》,中央研究院,1986年,頁67-79。

作者簡介
李國偉 一 中研院數學所兼任研究員
多年來致力推動科學普及工作,曾負責數學所《數學傳播》季刊出版事務,並長年參加「科學月刊社」活動,亦曾於1995年獲得「李國鼎通俗科學寫作獎」。1999年更將最近十年與科普相關文章出版為《一條畫不清的界線——李國偉的科文游牧集》。2000年出版與饒偉立合譯的《笛卡兒,拜拜!》,2002年以與葉李華合譯的《宇宙的詩篇》獲第一屆吳大猷科普寫作翻譯獎推薦獎。其他譯書尚有2002年《電腦也搞不定》與2004年《科學迎戰文化敵手》。《一條畫不清的界線——李國偉的科文游牧集》,《宇宙的詩篇》,《科學迎戰文化敵手》三書於2005年獲中華民國物理學會推薦列入100本優良中文物理科普書籍。《科學迎戰文化敵手》也獲得2006年第三屆吳大猷科普著作獎翻譯獎佳作獎。自1991年起提供天下遠見出版公司科學諮詢顧問,自2005年至2009年曾經參與《遠見》雜誌的〈透視科技〉專欄寫作。自2007年起則參與《科學人》雜誌的〈不可勝數〉專欄寫作。



附件:
(附件ㄧ)


(附件二)


(附件三)


(附件四)


(附件五)


(附件六)


(附件七)


(附件八)


(附件九)


(附件十)


(附件十一)


(附件十二)


 
(附件十三)
(附件十四)


(附件十五)


(附件十六)


(附件十七)


(附件十八)


(附件十九)


(附件二十)


(附件二十一)


(附件二十二)


(附件二十三)


(附件二十四)


1-1 of 1