Virtual Work:
 Velocity and Power Analysis of Transmissions

Kinematic Constraints

Kinematic constraints are constraints between rigid bodies that result in the decrease of the degrees of freedom of rigid body system.

Belt Transmission Velocities

Kinematic Constraint: Belt does not slip, stretch, or break

Gear Transmission Velocities

$$
\begin{aligned}
& \text { (gear } \Rightarrow \text { velocity of gear teeth (mss) } \\
& \omega \Rightarrow \text { angular velocity (ra dis) } \\
& \left.\begin{array}{l}
V_{\text {gear }}=\omega_{1} r_{1} \\
V_{\text {gear }}=\omega_{2} r_{2}
\end{array}\right\} \begin{array}{l}
\omega_{1} r_{1}=\omega_{2} r_{2} \\
\frac{\omega_{2}}{\omega_{1}}=\frac{r_{1}}{r_{2}}
\end{array}
\end{aligned}
$$

Kinematic Constraint: Gear teeth do not skip or break.

Car Speed Analysis

Assumptions:

- No slip occurs in the drive train or between the wheels and road.
- Motor speed is constant (neglect acceleration phase)

Direct Drive Motor is Attached Directly to Wheel

Find $\mathrm{V}_{\mathrm{car}}(\mathrm{m} / \mathrm{s})$ as function of $\omega_{\mathrm{m}}(\mathrm{rad} / \mathrm{s})$ and car dimensions

Direct Drive

Consider 1 wheel revolution:

$\mathrm{V}_{\text {car }}=$ distance traveled / time
For $\omega_{\mathrm{m}}=2(\mathrm{rad} / \mathrm{s})$ and $\mathrm{r}_{\mathrm{wh}}=0.3 \mathrm{~m}, \mathrm{~V}_{\mathrm{car}}=$?
A. $0.6 \mathrm{~m} / \mathrm{s}$
B. $3.77 \mathrm{~m} / \mathrm{s}$
C. $0.095 \mathrm{~m} / \mathrm{s}$
D. $1.2 \mathrm{~m} / \mathrm{s}$

Direct Drive

$\mathrm{V}_{\mathrm{car}}=$ distance traveled / time

In 1 wheel revolution distance travelled $=2 \pi r_{\text {wh }}$ (wheel circumference) time $=2 \pi(\mathrm{rad} / \mathrm{rev}) / \omega_{\mathrm{m}}(\mathrm{rad} / \mathrm{s})$
$V_{c a r}=2 \pi r_{w h} /\left(2 \pi / \omega_{m}\right)=r_{w h} \omega_{m}$
Also visualize relative velocity of center of wheel relative to stationary point of wheel on the ground.

Increasing wheel size => increases terminal velocity (neglecting friction and at expense of lower pushing force and lower acceleration)

Timing Belt Drive

Motor Turns pulley 1 and pulley 2 is attached to wheel

$\mathrm{V}_{\mathrm{car}}=$?
A. $2 \mathrm{~m} / \mathrm{s}$
B. $0.16 \mathrm{~m} / \mathrm{s}$
C. $0.04 \mathrm{~m} / \mathrm{s}$
D. $4.5 \mathrm{~m} / \mathrm{s}$

$$
r_{1}=0.1 \mathrm{~m}, r_{2}=0.15 \mathrm{~m}, r_{\mathrm{wh}}=0.25 \mathrm{~m}, \omega_{\mathrm{m}}=12 \mathrm{rad} / \mathrm{s}
$$

Timing Belt Drive Solution

No slip Condition:

$$
\left[\begin{array}{l}
V_{\text {bolt }}=W_{m} r_{p 1} \text { and } V_{b e l t}=W_{w h} r_{w h} \\
W_{m} r_{p_{1}}=W_{w h} r_{p_{2}} \Rightarrow W_{w h}=\frac{W_{m} r_{p 1}}{r_{p_{2}}}
\end{array}\right.
$$

From Problem 1 we know: $V_{\text {car }}=r_{\text {uh }} W_{w h}$

$$
V_{\text {car }}=r_{w h} W_{w h}=\frac{r_{w h} r_{p 1}}{r_{p_{2}}} w_{w h}
$$

To increase car velocity:

- increase r_{p} and $r_{w h}$
- decrease rps

Friction Drive
 Motor Shaft is Pressed Against Wheel

Friction Drive Solution

$V_{\tan } \rightarrow$ Tangential velocity at friction drive
[No slip condition $\Rightarrow W_{m} r_{s h}=W_{w h} \cdot r_{w h}$ $\omega_{w h}=\omega_{m} \frac{r_{s h}}{r_{w h}}$
From Problem 1 we know: $V_{\text {car }}=r_{\text {uh }} W_{\text {uh }}$

$$
v_{\text {car }}=w_{m} \frac{r_{s h}}{r_{r h}} R_{h}=w_{m} r_{s h}
$$

The size of the wheal does not impact car velocity.

Power Analysis of Transmissions

Power Analysis Approach

- Assume
- no frictional losses in transmission
- No energy storage in transmission
- Therefore:

Power In = Power Out
or alternatively

Work In = Work Out

What is Work Equation for Translation?

A. Work = Force (N)
B. Work = Force x Distance (Nm)
C. Work = Force x Velocity $(\mathrm{Nm} / \mathrm{s})$
D. Work $=$ Force \times Acceleration $\left(\mathrm{Nm} / \mathrm{s}^{2}\right)$

What is Power Equation for Translation?

A. Power = Force (N)
B. Power = Force \times Distance (Nm)
C. Power = Force x Velocity (Nm/s)
D. Power $=$ Force \times Acceleration $\left(\mathrm{Nm} / \mathrm{s}^{2}\right)$

What is Work Equation for Rotation?

A. Work = Torque (Nm)
B. Work $=$ Torque $x \Delta \theta(\mathrm{Nm})$
C. Work $=$ Torque $\times \omega(\mathrm{Nm} / \mathrm{s})$

D. Work $=$ Torque $\times \alpha\left(\mathrm{Nm} / \mathrm{s}^{2}\right)$
$\Delta \theta=>$ rotation in radians
ω => angular velocity in rad/s
$\alpha=>$ angular acceleration in rad/s²

What is Power Equation for Rotation?

A. Power = Torque (Nm)
B. Power $=$ Torque $x \Delta \theta(\mathrm{Nm})$
C. Power = Torque $x \omega(\mathrm{Nm} / \mathrm{s})$

D. Power $=$ Torque $\times \alpha\left(\mathrm{Nm} / \mathrm{s}^{2}\right)$
$\Delta \theta=>$ rotation in radians
ω => angular velocity in rad/s
$\alpha=>$ angular acceleration in rad/s ${ }^{2}$

Simple Gear Pair
$\tau_{\text {in }} \Rightarrow$ Input $\tau_{\text {torque }}$
Tout \Rightarrow Output σ orque (in direction applied by world onto output gear)
$W_{\text {in }} \Rightarrow$ Input speed
 Wout \Rightarrow Output speed

$$
\begin{aligned}
& \left\{\begin{array}{l}
V_{\text {tangent }} t=W_{\text {in }} r_{\text {in }} \\
V_{\text {tangent }}=W_{\text {out }} r_{\text {out }}
\end{array}\right\} \\
& \text { Virtual Work Using Power and Velocity } \\
& \left\{\begin{array}{l}
\text { Power } I_{n}=\tau_{\text {in }} W_{\text {in }} \\
P_{\text {lower }} \text { Oft }=\tau_{\text {out }} W_{\text {out }}
\end{array}\right. \\
& \frac{w_{\text {in }}}{w_{\text {ont }}}=\frac{r_{\text {out }}}{r_{\text {in }}} \\
& \frac{\tau_{\text {out }}}{\tau_{\text {in }}}=\frac{r_{\text {out }}}{r_{\text {in }}} \Rightarrow \begin{array}{l}
\text { same result as } \\
\text { are length approach }
\end{array}
\end{aligned}
$$

Gear Train Analysis Goal: Find $\tau_{\text {out }}$ as function of $\tau_{\text {in }}$

1) Define equations for $V_{t 1}$ and $V_{t 2}$
2) Solve for $W_{o a t} / W_{\text {in }}$ in terms of radiuses
3) Use Power $I_{n}=$ Power out to solve for $\tau_{\text {out }} / \tau_{\text {in }}$

Gear Train Analysis: Solution

Geometric Constraints

$$
\begin{aligned}
& {\left[\begin{array} { l }
{ V _ { t 1 } = W _ { \text { in } } r _ { \text { in } } = W _ { 2 } r _ { 2 } } \\
{ \rightarrow \omega _ { 2 } = W _ { \text { in } } r _ { \text { in } } / r _ { 2 } }
\end{array} \quad \left[\begin{array}{l}
V_{t 2}=W_{2} r_{3}=W_{\text {out }} r_{\text {out }} t \\
W_{2}=W_{\text {out }} r_{\text {out }} / r_{3}
\end{array}\right.\right.} \\
& \rightarrow \frac{W_{\text {in }} r_{\text {in }}}{r_{2}}=\frac{W_{\text {out }} r_{\text {out }}}{r_{3}} \Rightarrow \underbrace{\frac{W_{\text {out }}}{W_{\text {in }}}=\frac{r_{\text {in }} r_{3}}{r_{2} r_{\text {out }}}} \\
& \left\{\begin{array}{l}
\text { power in }=\tau_{\text {in }} W_{\text {in }} \\
\text { power out }=\tau_{\text {out }} W_{\text {out }}
\end{array}\right. \\
& \rightarrow \frac{\tau_{\text {out }}}{\tau_{\text {in }}}=\frac{W_{\text {in }}}{W_{\text {out }}}=\frac{r_{2} r_{\text {out }}}{r_{\text {in }} r_{3}} \Leftarrow \begin{array}{l}
\text { Mechanical } \\
\text { Advantage }
\end{array}
\end{aligned}
$$

Rack and Pinion

Find Rack Pushing Force, F, as a function of motor torque, τ_{m}.

Rack and Pinion Solution

Kinematic constraint: $W_{m} r_{1}=V_{x}$

$$
\begin{aligned}
& \left\{\text { Power } I_{n}=\tau_{m} W_{m}\right. \\
& \text { (Power Out }=F V_{x} \\
& \longrightarrow \frac{F}{\tau_{m}}=\frac{V_{m}}{V_{x}}=\frac{W_{m}}{W_{m} r_{1}}=\frac{1}{r_{1}}
\end{aligned}
$$

Large $r_{1} \Rightarrow$ Faster rack but lower pushing force.

Rack and Pinion with 2 Gears

Find Rack Pushing Force, F, as a function of motor torque, τ_{m}. What design guidelines do you conclude?

Rack and Pinion with Friction Drive

Find Rack Pushing Force, F, as a function of motor torque, τ_{m}.

Locking Pliers Grip Force

