Virtual Work: Velocity and Power Analysis of Transmissions

Kinematic Constraints

Kinematic constraints are constraints between rigid bodies that result in the decrease of the degrees of freedom of rigid body system.

Belt Transmission Velocities

Kinematic Constraint: Belt does not slip, stretch, or break

Gear Transmission Velocities

Kinematic Constraint: Gear teeth do not skip or break.

Car Speed Analysis

Assumptions:

- No slip occurs in the drive train or between the wheels and road.
- Motor speed is constant (neglect acceleration phase)

Direct Drive Motor is Attached Directly to Wheel

Find $V_{car}(m/s)$ as function of $\omega_m(rad/s)$ and car dimensions

Direct Drive

Consider 1 wheel revolution:

 V_{car} = distance traveled / time

For ω_m = 2 (rad/s) and r_{wh} = 0.3 m, V_{car} = ?

- A. 0.6 m/s
- B. 3.77 m/s
- C. 0.095 m/s
- D. 1.2 m/s

Direct Drive V_{car} = distance traveled / time In 1 wheel revolution distance travelled = 2 π r_{wh} (wheel circumference) time = 2 π (rad/rev) / ω_m (rad/s)

 $V_{car} = 2 \pi r_{wh} / (2 \pi / \omega_m) = r_{wh} \omega_m$

Also visualize relative velocity of center of wheel relative to stationary point of wheel on the ground.

wheel

Vcar

0

Increasing wheel size => increases terminal velocity (neglecting friction and at expense of lower pushing force and lower acceleration)

Timing Belt Drive Motor Turns pulley 1 and pulley 2 is attached to wheel

 $r_1 = 0.1 \text{ m}, r_2 = 0.15 \text{ m}, r_{wh} = 0.25 \text{ m}, \omega_m = 12 \text{ rad/s}$

Timing Belt Drive Solution

No slip condition: $V_{bolt} = W_m \Gamma_{p1}$ and $V_{bolt} = W_w h \Gamma_w h$ $V_w r_{p1} = W_w h \Gamma_{p2} \implies W_w h = \frac{W_m \Gamma_{p1}}{\Gamma_{p2}}$ From Problem I we know: Vcor = Ywh Wwh Vear = ruh Wwh = <u>ruh rpi</u> Wwh rpz To increase car velocity: - increase rp, and rwh - decrease rp2

Friction Drive Motor Shaft is Pressed Against Wheel

× The image

 $r_{sh} = 0.01 \text{ m}, r_{wh} = 0.25 \text{ m}, \omega_m = 12 \text{ rad/s}$

Friction Drive Solution

Voan -> Tangential velocity at friction drive No slip condition => Wm Ysh = Wwh Ywh Lo Wash = Wn Tish From Problem I we know: Ver= Ywh Wwh Vcer = Un <u>rsh</u> Ruh = Um rsh The size of the wheel does not impart car velocity.

Power Analysis of Transmissions

× The imag

Power Analysis Approach

• Assume

- no frictional losses in transmission
- No energy storage in transmission

• Therefore:

Power In = Power Out

or alternatively

Work In = Work Out

What is Work Equation for Translation?

- A. Work = Force (N)
- B. Work = Force x Distance (Nm)
- C. Work = Force x Velocity (Nm/s)
- D. Work = Force x Acceleration (Nm/s^2)

What is Power Equation for Translation?

- A. Power = Force (N)
- B. Power = Force x Distance (Nm)
- C. Power = Force x Velocity (Nm/s)
- D. Power = Force x Acceleration (Nm/s^2)

What is Work Equation for Rotation?

- A. Work = Torque (Nm)
- B. Work = Torque x $\Delta \theta$ (Nm)
- C. Work = Torque x ω (Nm/s)
- D. Work = Torque x α (Nm/s²)
- $\Delta \theta \Rightarrow$ rotation in radians $\omega \Rightarrow$ angular velocity in rad/s $\alpha \Rightarrow$ angular acceleration in rad/s²

What is Power Equation for Rotation?

- A. Power = Torque (Nm)
- B. Power = Torque x $\Delta \theta$ (Nm)
- C. Power = Torque x ω (Nm/s)
- **D.** Power = Torque x α (Nm/s²)

 $\Delta \theta \Rightarrow$ rotation in radians $\omega \Rightarrow$ angular velocity in rad/s $\alpha \Rightarrow$ angular acceleration in rad/s²

Simple Gear Pair

Tin => Input Torque Tout => Output Vorque (in direction applied by world onto output gear) Win => Input speed Wout => Output speed

Woab

V bangen t= Win Vin FlVtangent = Wout Fout Win Lo WinVin = Wout Pout Vistual Work Using Power and Velocity Power In= Vin Win Power Out = Vout Wout <u>Tout</u> = <u>Win</u> Vin = <u>Wout</u> = <u>Fout</u> <- $\frac{T_{out}}{T_{in}} = \frac{r_{out}}{r_{in}} \implies Same result as are length approach$

Gear Train Analysis Goal: Find τ_{out} as function of τ_{in}

Gear Train Analysis: Solution

Rack and Pinion

Find Rack Pushing Force, F, as a function of motor torque, τ_m .

Rack and Pinion Solution

× The image

Kinematic Constraint:
$$W_m \Gamma_i = V_X$$

(Power In = $\overline{U}_m W_m$
(Power $\overline{U}_{ub} = \overline{F} V_X$
) $\frac{\overline{F}}{\overline{U}_m} = \frac{W_m}{V_X} = \frac{W_m}{W_m \Gamma_i} = \frac{1}{\Gamma_i}$
Large $\Gamma_i = \overline{F}$ Faster Yack but lower pushing force.

Rack and Pinion with 2 Gears

Find Rack Pushing Force, F, as a function of motor torque, τ_m . What design guidelines do you conclude?

Rack and Pinion with Friction Drive

Find Rack Pushing Force, F, as a function of motor torque, τ_m .

Locking Pliers Grip Force

× The image

