Template for MAE3 Clock Point Mass Analysis

Tips for using MathCAD

- Text and math (equations) are included as separate parts of the document to make up a report with values that can be calculated and updated automatically
- Use the "Text Block" button to insert text that stretches across the page width and pushes other content down the page
- Use the "Text Box" button to insert text labels next to equations
- Use the "Math" button to insert equations with values and units
- Use the assignment opertator ":=" to assign a value to a variable
- Use the equation operator " $=$ " to calculate a value based on a defined equation
- Use the "Operators and Symbols> Symbols" button to insert greek letters like ρ

Pendulum Point Mass Analysis

Name:
Section:
Problem Description

Objective

Assumptions

CAD Geometry Values

Insert figures of pendulum with dimensions and Inventor mass properties here

Calculating Center of Mass of Pendulum

Variable
 Calculate Weight of Acrylic

Calculate Center of Mass of Acrylic Relative to Pivot Point

Length of Center of Mass of Acrylic from Inventor
Estimate Center of Mass of Acrylic
Percent Error in Acrylic Center of Mass Estimate

Calculate Total Weight of Pendulum

Weight of one bolt plus one nut
Number of bolts
Calculated total weight of pendulum with bolts and nuts
Measured total weight of pendulum with
Percent Error in total pendulum weight estimate

Calculate Center of Mass of Pendulum with Bolts
Length to center of mass of bolt 1
Length to center of mass of bolt 2
Length to center of mass of bolt 3
<add rows as required for number of bolts>
Length to center of mass of acrylic with bolts and nuts Estimated center of mass of acrylic with nuts and bolts Percent error in acrylic with bolts Lcom estimate

Value/ Equation [units]

$A:=99.35 \mathrm{~cm}^{2}$
$t:=0.610 \mathrm{~cm}$
$V:=A \cdot t=60.604 \mathrm{~cm}^{3}$
$\rho:=1188 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
$W_{\text {calc }}:=V \cdot \rho=0.072 \mathrm{~kg}$
$W_{\text {meas }}:=0.0698 \mathrm{~kg}$
$W_{\text {error }}:=\left|\frac{W_{\text {calc }}-W_{\text {meas }}}{W_{\text {calc }}}\right| \cdot 100=3.051$

Discussion

