9-26: Welcome to ECE 222A - Fall 2017.
Instructor: Prof. Gabriel M. Rebeiz Jacobs Hall (formerly EBU-1); Room 5608 Tel: 858-534-8001
Office Hours: Tuesdays and Thursdays at 1:30-3:00 pm and by appointment, Room 5608 Jacobs Hall
TA: TBD TA Offices Hours: TA office hours will be in Jacobs Hall Room 5101D (the back left cubicle of the Tutoring Center) Office Hours TBD
Lectures: Tuesdays and Thursdays, 11:00 am - 12:20 pm, Warren Lecture Hall 2114
Lecture Notes: Download on this website.
Textbook: Not required.
Other books:
Software: It is expected that you know Matlab, Mathematica, or Maple, etc.
Homework: About 6-7 homeworks will be assigned. Homework is due at the beginning of the lecture (not at the end). Homework solutions will be posted about 12 hours after the due date. Late homeworks will not be accepted except by permission from Prof. Rebeiz.
Grading: 15% Homework 35% Mid-term TBD
50% Final Exam Wednesday 13 Dec 2017, 11:30 am - 2:30 pm, Location TBD
All exams are open notes and open books. Bring your class notes and any cheat-sheets that you wish to write, and any book that you wish. However, I do not recommend that you bring books with you. You will not use them.
Decent math background in differential equations and complex numbers. Undergraduate EM (Physics and ECE 107) Knowledge of Maxwell Equations and Basic Waves.
Review Maxwell's Equations and a Wave Chapter in any available undergraduate textbook.
The homework will be graded very generally. That is, we will assign 10, 8, 6, 4, 2, and 0 as grades with the following guidelines: 10 (Well done to mostly done), 6 (about half of it is done), and 0 (not much is done or homework is not given). Late homework are not allowed unless by permission from instructor by email.
(Prerequisites: None, except a standard EM sequence at the undergraduate level. Communications people should be encouraged to take this course.)
- Introduction to Antennas: Gain, Directivity, Solid-angle, Impedance, Polarization, etc. - Friis Transmission and Radar Equations: Some System Examples - Review of Maxwell’s Equations, Reciprocity (important to antennas) - Plane waves, Polarization, Wave Impedance, Poynting Vector - Radiation and Free-Space Green’s function, Vector and Scalar Potentials - Dipoles and Loops, Impedance of dipoles and loops - Ground planes and Image Theory (introduce a bit arrays using image theory) - Traveling-Wave Antennas (radio amateur antennas and near-horizon communications) - Array Theory and Phased Arrays: Use signal processing techniques to analyze arrays (gain, tapered distribution, amplitude and phase error effects, 1-D and 2-D arrays, etc.) - Mutual Impedance in Arrays: The emf method. Not a lot of coverage, but enough to understand it. - Classic Antennas: Dual-Dipole over a ground plane (symmetric pattern, array theory), Dipole backed by a corner reflector (array theory), Yagi-Uda (mutual coupling effect), Log Periodic (endfire feeding), Helical antennas (traveling waves on a circle and end-fire feeding arrangement), Spiral antennas (wideband self-mapping), Inverted F-Antennas (cell phones), antennas for circular polarization (other than the helical antenna) - Equivalence Principle and Slot Antennas (do not cover cavity backed slots) - Microstrip Antennas: The two-slot model (do not cover cavity model), Microstrip antenna arrays. - Miniature Antennas (Cell phone applications) - System level applications of antennas (MIMO, Multi-Beam, Phased Arrays, etc.)
Human Absorption of Radiation Reflector and Lens Antennas
Microstrip antenna and arrays:
Honest Miniature antennas by Mitsubishi Corp: Picture of a 70-meter Deep Space Comm. Antenna at Goldstone, CAA web-site with lots of nice information
Some Matlab codes:
Some Matlab examples (
Homework 1 Solutions Fall 2013Fall 2012 Fall 2011
Fall 2010
Cheating, plagiarism and any other form of academic dishonesty will not be tolerated. This includes cheating on exams, using resources that are not allowed, copying lab reports or results, copying all or part of another group’s simulations or bread boards, lying to tutors/TAs or instructor, aiding in plagiarism or cheating, or any form of dishonesty. You may help each other with the homework (it does not need to be handed in). On the labs, you may consult each other. For example, you can ask how someone else went about solving the problem. You should not copy their solution or allow your solution to be copied. Once you have solved a problem yourself, you may compare and discuss. In short, you should do the work yourself and you can ask assistance from others. The TAs and tutors give you the same level of support (and this is a good yard stick for you to know what is allowed in terms of helping and what is not). Never claim work/ideas to be yours if they are not, and never assist others in cheating (e.g. by offering them your solutions). If you are not sure of what is allowed, ask the instructor. Wrong assumptions are never an excuse. |