statrefs home‎ > ‎Main‎ > ‎Books and Data Sets‎ > ‎

SAS Survival Analysis Techniques for Medical Research (Cantor)

 
 Author(s)  Alan B. Cantor
 Title  SAS Survival Analysis Techniques for Medical Research
 Edition  Second Edition
 Year  2003
 Publisher  SAS Institute Inc.
 ISBN  1-59047-135-0
 Website  www.sas.com
 

Data files and SAS code are available at the ftp site (http://ftp.sas.com/samples/A55504)



Table of Contents


Preface

Chapter 1  What Survivor Analysis is About
1.1 The Nature of Survival Data
1.2 Exercises
1.3 Calendar Time and Study Time
1.4 Exercise
1.5 Exercise
1.6 Functions That Describe Survival
1.7 Exercises
1.8 Some Commonly Used Survival Functions
1.9 Exercises
1.10 Functions That Allow for Cure
1.11 Fully Parametric and Nonparametric Methods
1.12 Some Common Assumptions
1.13 Exercises

Chapter 2  Non-Parametric Survival Function Estimation
2.1 The Kaplan-Meier Estimate of the Survival Function
2.2 Exercise
2.3 The Actuarial Life Table
2.4 The Variance of the Kaplan-Meier Estimator
2.5 Hypothesis Tests
2.6 Confidence Intervals
2.7 Some Problems with the Kaplan-Meier Estimator of S(t)
2.8 Using PROC LIFETEST
2.9 Two Macros as Alternatives to PROC LIFETEST
2.10 Planning a Study to Control the Standard Error
2.11 Example
2.12 The KMPLAN Macro
2.13 Exercise
2.14 Interval-Censored Data
2.15 Macros (SAS Macros)
2.15.1 KMTABLE Macro
2.15.2 KMPLOT Macro

Chapter 3  Non-Parametric Comparison of Survival Distributions
3.1 Notation
3.2 The Log Rank Statistic
3.3 More Than Two Groups
3.4 Other Linear Rank Tests
3.5 Using PROC LIFETEST
3.6 Exercises
3.7 A Test for Trend
3.8 Stratified Analyses
3.9 The Macro LINRANK
3.10 Permutation Tests and Randomization Tests
3.11 The Mantel-Byar Method
3.12 Power Analysis
3.13 Early Stopping Based on Conditional Power
3.14 Listings of Macros (SAS Macros)
3.14.1 LINRANK Macro
3.14.2 RAND_GEN Macro
3.14.3 PERM_GEN Macro
3.14.4 TEST Macro
3.14.5 SURVPOW Macro
3.14.6 MANTBYAR Macro
3.14.7 CONDPOW Macro

Chapter 4  Proportional Hazards Regression
4.1 Some Thoughts about Model-Based Estimation and Inference
4.2 The Cox (Proportional Hazards) Regression Model
4.3 The Hazard Ratio and Survival
4.4 Multiple Covariates
4.5 Defining Covariates
4.6 Scaling the Covariates
4.7 Survival Probabilities
4.8 Maximum Likelihood Estimation of the Coefficients
4.9 Using PROC PHREG
4.10 Model-Building Considerations
4.11 Time-Dependent Covariates
4.12 More Complex Models
4.13 Checking the Proportional Hazards Assumptions
4.14 Exercise
4.15 Survival Probabilities
4.16 Residuals
4.17 Power and Sample Size
4.18 Imputing Missing Values
4.19 Listings of Macros (SAS Macros)
4.19.1 PHPLOT Macro
4.19.2 PHPOW Macro

Chapter 5  Parametric Methods
5.1 Introduction
5.2 The Accelerated Failure Time Model
5.3 PROC LIFEREG
5.4 Example Using PROC LIFEREG
5.5 Comparison of Models
5.6 Estimates of Quantiles and Survival Probabilities
5.7 The PROC LIFEREG Parameters and the "Standard" Parameters
5.8 The Macro PARAMEST
5.9 Example Using the Macro PARAMEST
5.10 An Example with a Positive Cure Rate
5.11 Comparison of Groups
5.12 One-Sample Tests of Parameters
5.13 The Effects of Covariates on Parameters
5.14 Complex Expressions for the Survival and Hazard Functions
5.15 Graphical Checks for Certain Survival Distributions
5.16 A Macro for Fitting Parametric Models to Survival Data
5.17 Other Estimates of Interest
5.18 Listing of Macros (SAS Macros)
5.18.1 PARAMEST Macro
5.18.2 CHEKDIST Macro

Appendices
Appendix A  Mathematical Concepts
A.1 A Brief Introduction to Calculus
A.1.1 The Derivative
A.1.2 Higher Order and Partial Derivatives
A.1.3 Finding Maximum and Minimum Values of Functions
A.1.4 Definite Integrals
A.1.5 Exercises
A.1.6 The Exponential and Logarithmic Functions
A.1.7 Exercises
A.2 A Brief Introduction to Vectors and Matrices

Appendix B  Statistical Concepts
B.1 Random Variables
B.2 Probability Functions
B.3 Discrete Random Variables
B.4 Continuous Random Variables
B.5 Cumulative Distribution Functions
B.6 Exercises
B.7 Mean, Variance, and Standard Deviation
B.8 Joint Distributions
B.9 Conditional Probability and Stochastic Independence
B.10 The Delta Method for Two Variables
B.11 Parameters and Estimates
B.12 Maximum Likelihood Estimation
B.13 Likelihood Ratio Tests
B.14 Confidence Intervals

Appendix C  SAS Concepts
C.1 DATA Steps and PROC Steps
C.2 The DATA Step
C.3 The PROC Step
C.4 PROC IML
C.5 The SAS Macro Language


References

Index






SelectionFile type iconFile nameDescriptionSizeRevisionTimeUser
Comments