statrefs home‎ > ‎Main‎ > ‎Books and Data Sets‎ > ‎

Advanced Log-Linear Models Using SAS (Zelterman)

 
 Author(s)  Daniel Zelterman
 Title  Advanced Log-Linear Models Using SAS
 Edition  
 Year  2002
 Publisher  SAS Institute Inc.
 ISBN  1-59047-080-X
 Website  https://support.sas.com/pubscat/bookdetails.jsp?pc=57496
 




Contents


Preface

Acknowledgments

1 Discrete Distributions

   1.1 Introduction

   1.2 The Binomial Distribution

   1.3 The Poisson Distribution

   1.4 The Multinomial Distribution

   1.5 Negative Binomial and Negative Multinomial Distributions

 

2 Basic Log-Linear Models and the GENMOD Procedure

   2.1 Introduction

   2.2 Log-Linear Models for a 2x2 Table

   2.3 Log-Linear Models in Higher Dimensions

   2.4 Residuals for Log-Linear Models

   2.5 Tests of Statistical Significance

   2.6 The Likelihood Function

 

3 Ordered Categorical Variables

   3.1 Introduction

   3.2 Log-Linear Models with One Ordered Category

   3.3 Two Cross-Classified Ordered Categories

 

4 Non-Rectangular Tables

   4.1 Introduction

   4.2 Independence in a Triangular Table

   4.3 Interactions in a Circular Table

   4.4 Bradley-Terry Model for Pairwise Comparisons

 

5 Poisson Regression

   5.1 Introduction

   5.2 Poisson Regression for Mortality Data

   5.3 Poisson Regression with Overdispersion

 

6 Finite Population Size Estimation

   6.1 Introduction

   6.2 A Small Example

   6.3 A Larger Number of Lists

 


7 Truncated Poisson Regression

   7.1 Introduction

   7.2 Mathematical Background

   7.3 Truncated Poisson Models with Covariates

   7.4 An Example with Overdispersion

   7.5 Diagnostics and Options

 

8 The Hypergeometric Distribution

   8.1 Introduction

   8.2 Derivation of the Distribution

   8.3 Extended Hypergoemetric Distribution

   8.4 Hypergeometric Regression

   8.5 Comparing Several 2x2 Tables

  

9 Sample Size Estimation and Power for Log-Linear Models

   9.1 Introduction

   9.2 Background Theory

   9.3 Power for a 2x2 Table

   9.4 Sample Size for an Interaction

   9.5 Power for a Known Sample Size

 

A The Output Delivery System

B Programming Statements for Generalized Linear Models

C Additional Readings


References

Index







SelectionFile type iconFile nameDescriptionSizeRevisionTimeUser
Comments