statrefs home‎ > ‎Main‎ > ‎Books and Data Sets‎ > ‎

A Handbook of Statistical Analyses Using R (Everitt)

 
 Author(s)  Brian S. Everitt, Torsten Hothorn
 Title  A Handbook of Statistical Analyses Using R
 Edition  Second Edition
 Year  2009
 Publisher  CRC Press
 ISBN    9781420079333
 Website  http://www.crcpress.com/product/isbn/9781420079333  publisher
 http://cran.r-project.org/web/packages/HSAUR2/index.html  CRAN
 




Table of Contents


1. An Introduction to R
1.1 What Is R?
1.2 Installing R
1.3 Help and Documentation
1.4 Data Objects in R
1.5 Data Import and Export
1.6 Basic Data Manipulation
1.7 Computing with Data
1.8 Organizing an Analysis
1.9 Summary

2. Data Analysis Using Graphical Displays
2.1 Introduction
2.2 Initial Data Analysis
2.3 Analysis Using R
2.4 Summary

3. Simple Inference

3.1 Introduction
3.2 Statistical Tests
3.3 Analysis Using R
3.4 Summary

4. Conditional Inference

4.1 Introduction
4.2 Conditional Test Procedures
4.3 Analysis Using R
4.4 Summary

5. Analysis of Variance

5.1 Introduction
5.2 Analysis of Variance
5.3 Analysis Using R
5.4 Summary

6. Simple and Multiple Linear Regression

6.1 Introduction
6.2 Simple Linear Regression
6.3 Multiple Linear Regression
6.4 Analysis Using R
6.5 Summary

7. Logistic Regression and Generalized Linear Models

7.1 Introduction
7.2 Logistic Regression and Generalized Linear Models
7.3 Analysis Using R
7.4 Summary

8. Density Estimation

8.1 Introduction
8.2 Density Estimation
8.3 Analysis Using R
8.4 Summary

9. Recursive Partitioning

9.1 Introduction
9.2 Recursive Partitioning
9.3 Analysis Using R
9.4 Summary

10. Scatterplot Smoothers and Generalized Additive Models

10.1 Introduction
10.2 Scatterplot Smoothers and Generalized Additive Models
10.3 Analysis Using R
10.4 Summary

11. Survival Analysis

11.1 Introduction
11.2 Survival Analysis
11.3 Analysis Using R
11.4 Summary

12. Analyzing Longitudinal Data I

12.1 Introduction
12.2 Analyzing Longitudinal Data
12.3 Linear Mixed Effects Models
12.4 Analysis Using R
12.5 Prediction of Random Effects
12.6 The Problem of Dropouts
12.7 Summary

13. Analyzing Longitudinal Data II

13.1 Introduction
13.2 Methods for Non-normal Distributions
13.3 Analysis Using R: GEE
13.4 Analysis Using R: Random Effects
13.5 Summary

14. Simultaneous Inference and Multiple Comparisons

14.1 Introduction
14.2 Simultaneous Inference and Multiple Comparisons
14.3 Analysis Using R
14.4 Summary

15. Meta-Analysis
15.1 Introduction
15.2 Systematic Reviews and Meta-Analysis
15.3 Statistics of Meta-Analysis
15.4 Analysis Using R
15.5 Meta-Regression
15.6 Publication Bias
15.7 Summary

16. Principal Component Analysis

16.1 Introduction
16.2 Principal Component Analysis
16.3 Analysis Using R
16.4 Summary

17. Multidimensional Scaling
17.1 Introduction
17.2 Multidimensional Scaling
17.3 Analysis Using R
17.4 Summary

18. Cluster Analysis

18.1 Introduction
18.2 Cluster Analysis
18.3 Analysis Using R
18.4 Summary

Bibliography

Index





SelectionFile type iconFile nameDescriptionSizeRevisionTimeUser
Comments