Planetary Formation and Internal Structure

Description

This course will present the physical ideas underlying models of planetary interiors. We will use these ideas to understand current views of the structure and composition of solar system planets. This will provide a framework for setting up a theory of planet formation in a protoplanetary disk. We will then consider some exoplanets as tests of the aforementioned theory.

The course will consist of two lectures a week. Students will be required to complete biweekly assignments, and a final exam.

Instructors

Prof. Morris Podolak (TAU)
Prof. Oded Aharonson (WIS)

Syllabus

I How do we infer the structure and composition of planets?
    a) Equations of planetary structure
    b) Equations of state
        i) Experimental techniques for measuring the equation of state
        ii) Theoretical techniques
            (1) Elasticity theory, elastic constants, finite strain equation of state
            (2) Thermal contribution, Einstein model, Debye model, adiabat, melting
            (3) Non-ideal gases, virial coefficients, van der Waals gas
            (4) High pressure equations of state, Wigner-Seitz model, Thomas Fermi model
II How do we fit the model to observational parameters?
    a) Gravitational and rotational potential
    b) Practical example - constant density disk
    c) Rotating bodies
        i) Claraut's equation
        ii) Radau approximation
        iii) Mulitpole representation of the gravity field
III Heat transport
    a) Conductive solutions to the heat transport equation
    b) Radiative heat transport
        i) Opacities, Mie scattering
        ii) Equation of radiative transport
    c) Convective heat transport
IV Current state of planetary models - results and difficulties.
V Protoplanetary disks
    a) Minimum mass nebula
    b) Basic disk structure
    c) Spectral energy distribution
    d) Stability
VI Planet formation
    a) Grain motion in the gas
    b) Grain growth
    c) Pebbles
    d) Gravitational focusing, Safronov parameter
    e) Runaway accretion
    f) Giant planet formation
    g) Migration
VII How does this fit with observations of exoplanets?
Comments