Algebra II‎ > ‎

Daily Alg2

Check out http://acelkeeler.wordpress.com for answers to questions as well as notes.

Tuesday/Wednesday Feb 7th - 8th

posted Feb 7, 2012, 8:44 AM by Alicegop Keeler

The new math teacher Mr. Dull will be here starting Wednesday. To help him most effectively teach you he wants to know what you know.  You will take a practice test.  NO iPads, NO talking, NO help.  Do your best.  Show work demonstrating you are in a high school math class showing clear and well though Algebra processes. Use complete sentences. 

MAKE SURE YOU HAVE YOUR EDMODO SET UP AND THAT YOU HAVE TURNED IN THE FIRST FEW ASSIGNMENTS INTO EDMODO.
When you have turned in your pre-test please go onto Edmodo and and for assignment #4 pre test write Mr. Dull a note about how you think you did.  This is part of your assignment, make sure you complete this.  

2nd Semester!!!

posted Feb 3, 2012, 11:10 AM by Unknown user   [ updated Feb 6, 2012, 7:51 AM by Alicegop Keeler ]

Your new math teacher is Mr. Dull
rdull@acelfresno.org

First assignments
SIGN UP FOR EDMODO - there is a free app from the app store.  Download it. 
2ND SEMESTER COURSES ARE LISTED ON EDMODO PLEASE GET THESE COMPLETED.
Codes are 
1st: nupwe8
2nd: d0nxgr
3rd: dgxtiu
4th: 
5th: 23sglh
6th: c6r6oy


THEN you'll need new quia class codes.  http://quia.com/web
Since I am a different teacher than the last teacher I have a different quia account.  You need to add my class code to your account.


1st: EFME497
2nd: DRC863
3rd: XDDRJ934
5th: HPCXFG846
6th: KBK636



Your instructor requests that you enroll in the following class: 

  Class: 1st Geometry 2011-2012
  Code: EFME497

Step 1. Go to the Quia website at http://www.quia.com/web. 

Step 2. Now, click the area labeled Students. When the next page appears, enter your username and password if you already have a Quia account. If you do not have an account, click the link Create my free account. Fill out the form that appears. Select "Student" as the account type. When you are done, press the Create my account button. 

Step 3. You should now be in the Student Zone. Type in the class code EFME497 in the text field and press the Add class button. Now you're done! 

Now that you have registered for your instructor's course, you can view your class web page, take quizzes, view your quiz results, view time spent on Quia activities, and read your instructor's feedback from your Quia account. 

Follow these steps to view your results: 

Step 1. Log in to your account. (Remember, go to the Quia Web home page at http://www.quia.com/web and click the area labeled Students.) 

Step 2. Click on the class name.

You want to complete these activities on Edmodo. After you have done that please work on this Quia activity for Mr. Dull http://www.quia.com/quiz/3502598.html 




M/T Jan 30 Feb 1

posted Jan 30, 2012, 12:50 PM by Unknown user   [ updated Jan 30, 2012, 12:50 PM ]

R/F Jan 26-27

posted Jan 26, 2012, 11:51 AM by Alicegop Keeler

Anything you want to have graded for the semester grade needs to be turned in this weekend. 

You will want to work on the worksheets for matricies that you received last time (questions and answers are on the previous daily algebra 2).

#57 Algebra 2 Cumulative Questions
You will want to complete this with at least 50%. It might take you several attempts.  Many of the questions we have not covered but they do have directions if you submit a wrong answer, I would encourage you to look over the directions and see if you can make sense of the problem.  Many of the questions are review from Algebra 1, some are things we have done in Algebra 2 and some are completely new to you (Algebra 2).  For example we have not covered imaginary numbers (also complex numbers).  But they are not that hard, look at this website: http://www.purplemath.com/modules/complex.htm there are 3 pages, I think you might find that it is very doable. 
Title: 57 cumulative questions
XP: 200

T/W Jan 24-25

posted Jan 24, 2012, 10:01 AM by Alice Keeler   [ updated Jan 24, 2012, 1:00 PM by Alicegop Keeler ]

Let's do a little long division.

#47
Matrices
Title: Some matrices
Category: Alg2, classwork
Tags: matrices
XP: 150



Name _____________________________
Date ___________________
Matrices
(Answer ID # 0915376)
Complete.
1.  
  1     17     -7     -6  
  -15     -8     8     -18  
  12     -5     18     -2  
  +  
  -14     17     0     -18  
  -9     16     -11     11  
  10     12     -7     1  

2.  
  17     5  
  +  
  17     -14  


Complete.
3.  
  16     -9     -6     20  
  -7     -5     -8     6  
  -  
  10     -2     7     -6  
  -18     11     -14     -12  

4.  
  16     -6  
  1     -5  
  -  
  -12     -18  
  -17     15  


Complete.
5.  
  2     -17     -19  
  -  
  -8     13     20  
  -  
  -10     7     -6  


Complete.
6.  
  9  
  -1  
  16  
  20  
  +  
  7  
  12  
  -17  
  -9  
  -  
  -20  
  -10  
  -4  
  -11  


 

Find the product. If the product is not defined, state the reason.
7.  
  1     -9     -13     -7  
  -1     -10     15     0  
  3     -5     -14     13  
  -20     9     -18     20  
  
  -18     4     -20     -8  
  11     -1     -11     -9  
  18     -13     3     -15  
  -7     -17     0     -10  


Solve for x and y.
8.  
  8     11     -20     -5  
  6     -18     -9     -19  
  5     -13     13     3  
  0     14     -16     2  
  
  15     2     4     3  
  -19     -16     -1     -7  
  20     14     0     9  
  18     8     -3     x  
  =  
  y     -480     36     -188  
  -90     22     99     234  
  636     424     24     196  
  -550     -432     -20     -260  


Calculate the determinant of each matrix. Show your work.
9.  
  -6     6  
  -10     9  

10.  
  -14     -16  
  11     -15  

11.  
  -6     6  
  -11     9  


Calculate the determinant of each matrix. Show your work.
12.   Use the diagonals method.
  6     14     -4  
  8     -6     -19  
  -15     -13     13  

13.  
  -8     -7  
  -20     9  

14.   Use the diagonals method.
  20     -14     -9  
  -2     -8     -20  
  0     4     -11  


 

Use determinants to calculate the area. Show your work.
15.   Calculate the area of the triangle with the following points:
(1, -3), (-1, -6), (3, -8)





16.   Calculate the area of the triangle with the following points:
(3, 4), (1, 1), (8, 8)





17.   Calculate the area of the triangle with the following points:
(-2, -2), (2, 8), (-1, 3)






Use determinants to calculate the area. Show your work.
18.   Calculate the area of the quadrilateral with the following points:
(-3, 3), (-1, 7), (2, 5), (4, 2)





19.   Calculate the area of the quadrilateral with the following points:
(-2, -3), (-4, 2), (-1, -1), (0, -4)





20.   Calculate the area of the quadrilateral with the following points:
(4, 0), (5, 3), (9, 7), (11, 0)






Complete.
21.   Find the inverse of:
  8     10  
  11     1  

22.   Find the inverse of:
  -6     9  
  -12     -2  

23.   Find the inverse of:
  -12     7  
  5     6  


Solve the matrix equation.
24.  
  -9     5  
  9     -4  
  X     =  
  43     53     59  
  -47     -46     -58  



25.  
  -6     6  
  4     5  
  X     +  
  8     6  
  2     11  
  =  
  -40     -66  
  -29     -22  




 

Write the linear system as a matrix equation.
26.   -2x + 9y = 31
-6x - 8y = 58

27.   -1x - 3y = 5
4x - 5y = 65

28.   3x - 5y - 6z = 64
9x - 2y - 7z = 116
4x - 8y + 1z = 83


Use an inverse matrix to solve the linear system.
29.   -2x - 8y = 110
3x + 9y = -126

30.   1x + 5y = -33
-7x - 4y = -48


Write the augmented matrix for the linear system and then solve.
31.   -3x - 2y = 7
6x + 8y = -34

32.   -1x + 4y - 9z = -32
4x - 8y - 7z = -17
-6x + 5y - 3z = -1


Solve each system of equations using Cramer's rule.
33.   -7x + 2y + 1z = 54
-3x + 6y - 5z = -24
-9x - 1y - 5z = 72

34.   3x - 2y = -20
-7x - 6y = 4

35.   9x + 3y = 15
-4x + 2y = -10



 

Answer Key 0915376
Complete.
1.  
  1     17     -7     -6  
  -15     -8     8     -18  
  12     -5     18     -2  
  +  
  -14     17     0     -18  
  -9     16     -11     11  
  10     12     -7     1  

  -13     34     -7     -24  
  -24     8     -3     -7  
  22     7     11     -1  
2.  
  17     5  
  +  
  17     -14  

  34     -9  

Complete.
3.  
  16     -9     -6     20  
  -7     -5     -8     6  
  -  
  10     -2     7     -6  
  -18     11     -14     -12  

  6     -7     -13     26  
  11     -16     6     18  
4.  
  16     -6  
  1     -5  
  -  
  -12     -18  
  -17     15  

  28     12  
  18     -20  

Complete.
5.  
  2     -17     -19  
  -  
  -8     13     20  
  -  
  -10     7     -6  

  20     -37     -33  

 

Answer Key 0915376
Complete.
6.  
  9  
  -1  
  16  
  20  
  +  
  7  
  12  
  -17  
  -9  
  -  
  -20  
  -10  
  -4  
  -11  

  36  
  21  
  3  
  22  

Find the product. If the product is not defined, state the reason.
7.  
  1     -9     -13     -7  
  -1     -10     15     0  
  3     -5     -14     13  
  -20     9     -18     20  
  
  -18     4     -20     -8  
  11     -1     -11     -9  
  18     -13     3     -15  
  -7     -17     0     -10  

  -302     301     40     338  
  178     -189     175     -127  
  -452     -22     -47     101  
  -5     -195     247     149  

Solve for x and y.
8.  
  8     11     -20     -5  
  6     -18     -9     -19  
  5     -13     13     3  
  0     14     -16     2  
  
  15     2     4     3  
  -19     -16     -1     -7  
  20     14     0     9  
  18     8     -3     x  
  =  
  y     -480     36     -188  
  -90     22     99     234  
  636     424     24     196  
  -550     -432     -20     -260  

x=-9; y=-579

 

Answer Key 0915376
Calculate the determinant of each matrix. Show your work.
9.  
  -6     6  
  -10     9  

6
10.  
  -14     -16  
  11     -15  

386
11.  
  -6     6  
  -11     9  

12

Calculate the determinant of each matrix. Show your work.
12.   Use the diagonals method.
  6     14     -4  
  8     -6     -19  
  -15     -13     13  

-468 + 3990 + 416 - -360 - 1482 - 1456, or 1360
13.  
  -8     -7  
  -20     9  

-212
14.   Use the diagonals method.
  20     -14     -9  
  -2     -8     -20  
  0     4     -11  

1760 + 0 + 72 - 0 - -1600 - -308, or 3740

Use determinants to calculate the area. Show your work.
15.   Calculate the area of the triangle with the following points:
(1, -3), (-1, -6), (3, -8)






(+/-): (2 - 12 + 26) / 2 = 16 / 2 = 8
16.   Calculate the area of the triangle with the following points:
(3, 4), (1, 1), (8, 8)






(+/-): (-21 + 28 + 0) / 2 = 7 / 2 = 3 1/2
17.   Calculate the area of the triangle with the following points:
(-2, -2), (2, 8), (-1, 3)






(+/-): (-10 + 6 + 14) / 2 = 10 / 2 = 5

 

Answer Key 0915376
Use determinants to calculate the area. Show your work.
18.   Calculate the area of the quadrilateral with the following points:
(-3, 3), (-1, 7), (2, 5), (4, 2)






Triangle 1: (+/-): (-6 + 9 - 19) / 2 = -16 / 2 = 8
Triangle 2: (+/-): (-8 + 10 - 21) / 2 = -19 / 2 = 9 1/2
Answer = Triangle 1 + Triangle 2 = 17 1/2
19.   Calculate the area of the quadrilateral with the following points:
(-2, -3), (-4, 2), (-1, -1), (0, -4)






Triangle 1: (+/-): (-6 - 9 + 6) / 2 = -9 / 2 = 4 1/2
Triangle 2: (+/-): (0 - 4 - 1) / 2 = -5 / 2 = 2 1/2
Answer = Triangle 1 + Triangle 2 = 7
20.   Calculate the area of the quadrilateral with the following points:
(4, 0), (5, 3), (9, 7), (11, 0)






Triangle 1: (+/-): (-16 - 0 + 8) / 2 = -8 / 2 = 4
Triangle 2: (+/-): (-77 - 0 + 28) / 2 = -49 / 2 = 24 1/2
Answer = Triangle 1 + Triangle 2 = 28 1/2

Complete.
21.   Find the inverse of:
  8     10  
  11     1  

  -1/102     5/51  
  11/102     -4/51  
22.   Find the inverse of:
  -6     9  
  -12     -2  

  -1/60     -3/40  
  1/10     -1/20  
23.   Find the inverse of:
  -12     7  
  5     6  

  -6/107     7/107  
  5/107     12/107  

Solve the matrix equation.
24.  
  -9     5  
  9     -4  
  X     =  
  43     53     59  
  -47     -46     -58  



  -7     -2     -6  
  -4     7     1  
25.  
  -6     6  
  4     5  
  X     +  
  8     6  
  2     11  
  =  
  -40     -66  
  -29     -22  



  1     3  
  -7     -9  

 

Answer Key 0915376
Write the linear system as a matrix equation.
26.   -2x + 9y = 31
-6x - 8y = 58


  -2     9  
  -6     -8  
 
  x  
  y  
  =  
  31  
  58  
27.   -1x - 3y = 5
4x - 5y = 65


  -1     -3  
  4     -5  
 
  x  
  y  
  =  
  5  
  65  
28.   3x - 5y - 6z = 64
9x - 2y - 7z = 116
4x - 8y + 1z = 83


  3     -5     -6  
  9     -2     -7  
  4     -8     1  
 
  x  
  y  
  z  
  =  
  64  
  116  
  83  

Use an inverse matrix to solve the linear system.
29.   -2x - 8y = 110
3x + 9y = -126


  -2     -8  
  3     9  
 
  x  
  y  
  =  
  110  
  -126  

Inverse of the A=
  1 1/2     1 1/3  
  -1/2     -1/3  

x=-3, y=-13

30.   1x + 5y = -33
-7x - 4y = -48


  1     5  
  -7     -4  
 
  x  
  y  
  =  
  -33  
  -48  

Inverse of the A=
  -4/31     -5/31  
  7/31     1/31  

x=12, y=-9


Write the augmented matrix for the linear system and then solve.
31.   -3x - 2y = 7
6x + 8y = -34


  -3     -2    |    7  
  6     8    |    -34  

x=1, y=-5

32.   -1x + 4y - 9z = -32
4x - 8y - 7z = -17
-6x + 5y - 3z = -1


  -1     4     -9    |    -32  
  4     -8     -7    |    -17  
  -6     5     -3    |    -1  

x=-3, y=-2, z=3


 

Answer Key 0915376
Solve each system of equations using Cramer's rule.
33.   -7x + 2y + 1z = 54
-3x + 6y - 5z = -24
-9x - 1y - 5z = 72


x =
  54     2     1  
  -24     6     -5  
  72     -1     -5  

362
  =  
-3258

362
y =
  -7     54     1  
  -3     -24     -5  
  -9     72     -5  

362
  =  
-2172

362
z =
  -7     2     54  
  -3     6     -24  
  -9     -1     72  

362
  =  
1086

362
x=-9, y=-6, z=3
34.   3x - 2y = -20
-7x - 6y = 4


x =
  -20     -2  
  4     -6  

-32
  =  
128

-32
y =
  3     -20  
  -7     4  

-32
  =  
-128

-32
x=-4, y=4
35.   9x + 3y = 15
-4x + 2y = -10


x =
  15     3  
  -10     2  

30
  =  
60

30
y =
  9     15  
  -4     -10  

30
  =  
-30

30
x=2, y=-1

Here is some more practice problems.  These below we can use for in class practice or extra practice.

Name _____________________________
Date ___________________
Matrices
(Answer ID # 0151366)
Complete.
1.  
  8    -2    -16    10  
  -19    -3    3    -15  
  -6    12    20    -18  
  +  
  -20    -10    17    -15  
  6    19    -2    -17  
  -1    -11    10    16  

2.  
  12    -7    10  
  6    9    -10  
  +  
  -12    -10    -16  
  15    -13    17  


Complete.
3.  
  -11    -10  
  -  
  -4    -9  

4.  
  -7    14    1  
  -6    -20    8  
  -3    10    -15  
  9    13    6  
  -  
  14    -8    10  
  3    -13    11  
  -7    -18    -20  
  -4    -9    -17  


Complete.
5.  
  18    5    19    16  
  10    12    -20    1  
  -6    -13    0    -5  
  +  
  15    16    -6    -19  
  18    6    -7    -10  
  2    -5    13    -2  
  +  
  -14    16    -6    1  
  7    15    -12    4  
  -8    2    -20    12  


Complete.
6.  
  14    -6  
  -2    -15  
  -20    7  
  +  
  -6    1  
  -19    -8  
  6    13  
  +  
  18    -1  
  19    20  
  -18    9  


 

Find the product. If the product is not defined, state the reason.
7.  
  0    10  
  -20    4  
  
  10    -7  
  9    17  


Solve for x and y.
8.  
  8    2    -7    x  
  4    -15    19    11  
  -18    -13    14    -17  
  1    -11    -6    -14  
  
  20    -15    -7    1  
  7    16    -17    -4  
  13    -9    0    -8  
  9    4    14    -11  
  =  
  164    11    36    -43  
  y    -427    381    -209  
  -422    -132    109    109  
  -261    -193    -16    247  


Calculate the determinant of each matrix. Show your work.
9.  
  -3    -19  
  7    11  

10.  
  -7    18  
  -10    15  

11.  
  -15    -14  
  -17    -5  


Calculate the determinant of each matrix. Show your work.
12.  Expand along row 3.
  -18    -3    2  
  0    5    -14  
  1    10    -7  

13.  
  8    1  
  13    -12  

14.  Use the diagonals method.
  -4    18    4  
  5    -2    9  
  16    -7    20  


 

Use determinants to calculate the area. Show your work.
15.  Calculate the area of the triangle with the following points:
(2, -1), (-3, -5), (-1, -6)





16.  Calculate the area of the triangle with the following points:
(-5, 0), (-8, -3), (-2, 5)





17.  Calculate the area of the triangle with the following points:
(5, 2), (2, -1), (1, -4)






Use determinants to calculate the area. Show your work.
18.  Calculate the area of the quadrilateral with the following points:
(-5, -1), (-4, 2), (1, 4), (4, -4)





19.  Calculate the area of the quadrilateral with the following points:
(-2, -5), (1, -1), (4, -2), (5, -4)





20.  Calculate the area of the quadrilateral with the following points:
(-2, 2), (-2, 5), (1, 4), (5, -1)






Complete.
21.  Find the inverse of:
  5    3  
  -10    -4  

22.  Find the inverse of:
  8    -10  
  -7    6  

23.  Find the inverse of:
  9    6  
  5    -5  


Solve the matrix equation.
24.  
  12    -11  
  7    1  
  X    +  
  5    -11  
  3    4  
  =  
  -138    118  
  -73    57  



25.  
  6    12  
  5    -11  
  X    =  
  -120    90  
  110    -72  




 

Write the system of linear equations represented by each matrix equation.
26.  
  -1    6    3  
  -4    -8    -9  
  -7    5    -2  
 
  x  
  y  
  z  
  =  
  23  
  37  
  91  


27.  
  -1    4    -8  
  -6    5    -7  
  2    9    -3  
 
  x  
  y  
  z  
  =  
  -65  
  -30  
  -86  



Use the inverse of the linear system to solve for x, y, and z.
28.  8x + 6y - 1z = -99
-3x - 9y + 2z = 93
-7x + 4y + 5z = -9
A-1  =  
  53/343    34/343    -3/343  
  -1/343    -33/343    13/343  
  75/343    74/343    54/343  


29.  -9x + 3y + 5z = 35
-1x + 2y - 8z = 64
6x - 4y - 7z = 16
A-1  =  
  -46/209    1/209    -34/209  
  -5/19    3/19    -7/19  
  -8/209    -18/209    -15/209  



Write the augmented matrix for the linear system and then solve.
30.  7x - 9y - 6z = 12
-5x - 4y - 1z = -29
-3x + 8y + 2z = 19

31.  1x - 8y - 6z = 21
-4x - 9y + 5z = 42
-2x - 7y + 3z = 32


Solve each system of equations using Cramer's rule.
32.  -1x + 7y - 4z = -6
6x - 8y + 3z = -3
5x - 9y - 2z = 18

33.  -3x - 8y = -41
-7x + 1y = -76

34.  -2x - 4y = 14
9x - 6y = 153



 

Answer Key 0151366
Complete.
1.  
  8    -2    -16    10  
  -19    -3    3    -15  
  -6    12    20    -18  
  +  
  -20    -10    17    -15  
  6    19    -2    -17  
  -1    -11    10    16  

  -12    -12    1    -5  
  -13    16    1    -32  
  -7    1    30    -2  
2.  
  12    -7    10  
  6    9    -10  
  +  
  -12    -10    -16  
  15    -13    17  

  0    -17    -6  
  21    -4    7  

Complete.
3.  
  -11    -10  
  -  
  -4    -9  

  -7    -1  
4.  
  -7    14    1  
  -6    -20    8  
  -3    10    -15  
  9    13    6  
  -  
  14    -8    10  
  3    -13    11  
  -7    -18    -20  
  -4    -9    -17  

  -21    22    -9  
  -9    -7    -3  
  4    28    5  
  13    22    23  

Complete.
5.  
  18    5    19    16  
  10    12    -20    1  
  -6    -13    0    -5  
  +  
  15    16    -6    -19  
  18    6    -7    -10  
  2    -5    13    -2  
  +  
  -14    16    -6    1  
  7    15    -12    4  
  -8    2    -20    12  

  19    37    7    -2  
  35    33    -39    -5  
  -12    -16    -7    5  

 

Answer Key 0151366
Complete.
6.  
  14    -6  
  -2    -15  
  -20    7  
  +  
  -6    1  
  -19    -8  
  6    13  
  +  
  18    -1  
  19    20  
  -18    9  

  62    -6  
  -2    33  
  -68    95  

Find the product. If the product is not defined, state the reason.
7.  
  0    10  
  -20    4  
  
  10    -7  
  9    17  

  90    170  
  -164    208  

Solve for x and y.
8.  
  8    2    -7    x  
  4    -15    19    11  
  -18    -13    14    -17  
  1    -11    -6    -14  
  
  20    -15    -7    1  
  7    16    -17    -4  
  13    -9    0    -8  
  9    4    14    -11  
  =  
  164    11    36    -43  
  y    -427    381    -209  
  -422    -132    109    109  
  -261    -193    -16    247  

x=9; y=321

 

Answer Key 0151366
Calculate the determinant of each matrix. Show your work.
9.  
  -3    -19  
  7    11  

100
10.  
  -7    18  
  -10    15  

75
11.  
  -15    -14  
  -17    -5  

-163

Calculate the determinant of each matrix. Show your work.
12.  Expand along row 3.
  -18    -3    2  
  0    5    -14  
  1    10    -7  

32 - 2520 + 630 = -1858
13.  
  8    1  
  13    -12  

-109
14.  Use the diagonals method.
  -4    18    4  
  5    -2    9  
  16    -7    20  

160 + 2592 + -140 - -128 - 252 - 1800, or 688

Use determinants to calculate the area. Show your work.
15.  Calculate the area of the triangle with the following points:
(2, -1), (-3, -5), (-1, -6)






(+/-): (2 - 2 + 13) / 2 = 13 / 2 = 6 1/2
16.  Calculate the area of the triangle with the following points:
(-5, 0), (-8, -3), (-2, 5)






(+/-): (40 - 0 - 46) / 2 = -6 / 2 = 3
17.  Calculate the area of the triangle with the following points:
(5, 2), (2, -1), (1, -4)






(+/-): (15 - 2 - 7) / 2 = 6 / 2 = 3

 

Answer Key 0151366
Use determinants to calculate the area. Show your work.
18.  Calculate the area of the quadrilateral with the following points:
(-5, -1), (-4, 2), (1, 4), (4, -4)






Triangle 1: (+/-): (10 - 5 - 18) / 2 = -13 / 2 = 6 1/2
Triangle 2: (+/-): (-20 - 24 - 19) / 2 = -63 / 2 = 31 1/2
Answer = Triangle 1 + Triangle 2 = 38
19.  Calculate the area of the quadrilateral with the following points:
(-2, -5), (1, -1), (4, -2), (5, -4)






Triangle 1: (+/-): (-2 - 15 + 2) / 2 = -15 / 2 = 7 1/2
Triangle 2: (+/-): (-15 - 24 + 24) / 2 = -15 / 2 = 7 1/2
Answer = Triangle 1 + Triangle 2 = 15
20.  Calculate the area of the quadrilateral with the following points:
(-2, 2), (-2, 5), (1, 4), (5, -1)






Triangle 1: (+/-): (-2 + 6 - 13) / 2 = -9 / 2 = 4 1/2
Triangle 2: (+/-): (-10 - 3 - 10) / 2 = -23 / 2 = 11 1/2
Answer = Triangle 1 + Triangle 2 = 16

Complete.
21.  Find the inverse of:
  5    3  
  -10    -4  

  -2/5    -3/10  
  1    1/2  
22.  Find the inverse of:
  8    -10  
  -7    6  

  -3/11    -5/11  
  -7/22    -4/11  
23.  Find the inverse of:
  9    6  
  5    -5  

  1/15    2/25  
  1/15    -3/25  

Solve the matrix equation.
24.  
  12    -11  
  7    1  
  X    +  
  5    -11  
  3    4  
  =  
  -138    118  
  -73    57  



  -11    8  
  1    -3  
25.  
  6    12  
  5    -11  
  X    =  
  -120    90  
  110    -72  



  0    1  
  -10    7  

 

Answer Key 0151366
Write the system of linear equations represented by each matrix equation.
26.  
  -1    6    3  
  -4    -8    -9  
  -7    5    -2  
 
  x  
  y  
  z  
  =  
  23  
  37  
  91  


-1x + 6y + 3z = 23
-4x - 8y - 9z = 37
-7x + 5y - 2z = 91

27.  
  -1    4    -8  
  -6    5    -7  
  2    9    -3  
 
  x  
  y  
  z  
  =  
  -65  
  -30  
  -86  


-1x + 4y - 8z = -65
-6x + 5y - 7z = -30
2x + 9y - 3z = -86


Use the inverse of the linear system to solve for x, y, and z.
28.  8x + 6y - 1z = -99
-3x - 9y + 2z = 93
-7x + 4y + 5z = -9
A-1  =  
  53/343    34/343    -3/343  
  -1/343    -33/343    13/343  
  75/343    74/343    54/343  


x=-6, y=-9, z=-3
29.  -9x + 3y + 5z = 35
-1x + 2y - 8z = 64
6x - 4y - 7z = 16
A-1  =  
  -46/209    1/209    -34/209  
  -5/19    3/19    -7/19  
  -8/209    -18/209    -15/209  


x=-10, y=-5, z=-8

Write the augmented matrix for the linear system and then solve.
30.  7x - 9y - 6z = 12
-5x - 4y - 1z = -29
-3x + 8y + 2z = 19


  7    -9    -6   |   12  
  -5    -4    -1   |   -29  
  -3    8    2   |   19  

x=3, y=5, z=-6

31.  1x - 8y - 6z = 21
-4x - 9y + 5z = 42
-2x - 7y + 3z = 32


  1    -8    -6   |   21  
  -4    -9    5   |   42  
  -2    -7    3   |   32  

x=1, y=-4, z=2


 

Answer Key 0151366
Solve each system of equations using Cramer's rule.
32.  -1x + 7y - 4z = -6
6x - 8y + 3z = -3
5x - 9y - 2z = 18


x =
  -6    7    -4  
  -3    -8    3  
  18    -9    -2  

202
  =  
-606

202
y =
  -1    -6    -4  
  6    -3    3  
  5    18    -2  

202
  =  
-606

202
z =
  -1    7    -6  
  6    -8    -3  
  5    -9    18  

202
  =  
-606

202
x=-3, y=-3, z=-3
33.  -3x - 8y = -41
-7x + 1y = -76


x =
  -41    -8  
  -76    1  

-59
  =  
-649

-59
y =
  -3    -41  
  -7    -76  

-59
  =  
-59

-59
x=11, y=1
34.  -2x - 4y = 14
9x - 6y = 153


x =
  14    -4  
  153    -6  

48
  =  
528

48
y =
  -2    14  
  9    153  

48
  =  
-432

48
x=11, y=-9

F/F Jan 20-23

posted Jan 20, 2012, 1:00 PM by Alicegop Keeler   [ updated Jan 20, 2012, 1:14 PM ]

We will do stuff together.  

GET STUFF TURNED IN!!!!!!!!

Long Division

W/R Jan 18-19

posted Jan 17, 2012, 9:40 PM by Alicegop Keeler   [ updated Jan 17, 2012, 9:42 PM ]

Warm Up - Do a 3x3 matrix determinant.
(Note, 5th period you might want to look at the daily from last time.  I posted a bunch of examples)

#47 Continue working on #47 worksheet.  Working with Polynomials.
Answers are below so you MUST show work samples too!

#48 Take this practice quiz. Need to get at least 20% (keep taking it until you do!!!)
http://www.quia.com/quiz/3461693.html 

As always... Post to your WordPress!!!!!!!

#47 worksheets
Calculate the determinant of each matrix. Show your work.

1.Expand along column 3.
  19    -1    1  
  -18    -6    -11  
  9    16    15  

2.Expand along column 2.
  -1    17    -12  
  2    20    0  
  8    -5    -4  

3.Expand along column 1.
  6    14    -5  
  -12    -6    -7  
  19    -9    16  

4.Expand along row 2.
  -19    -4    16  
  13    -13    -10  
  20    -6    -2  

5.Expand along row 2.
  -13    -2    14  
  8    -14    -7  
  13    -5    19  

6.Expand along column 3.
  -18    -20    13  
  17    14    9  
  -4    -5    3  

7.Expand along row 3.
  -3    13    15  
  -16    20    -18  
  -8    -19    14  

8.Expand along column 3.
  4    -6    1  
  -14    9    -8  
  -17    -11    12  

9.Expand along column 3.
  15    -20    5  
  -4    -19    -10  
  14    -9    7  

10.Expand along column 1.
  4    -13    -4  
  -2    -1    1  
  18    17    11  

11.Expand along row 3.
  -4    -12    4  
  17    -17    18  
  20    -2    -15  

12.Expand along column 1.
  18    16    6  
  2    7    3  
  -6    -1    -3  

13.Expand along row 2.
  -16    16    12  
  -10    -7    -4  
  0    -17    -20  

14.Expand along column 3.
  -18    -5    -16  
  13    5    -8  
  17    10    -6  

15.Expand along row 3.
  1    9    -3  
  15    -17    -20  
  -9    6    -15  

16.Expand along row 2.
  -15    20    -20  
  -4    15    4  
  8    5    -16  

17.Expand along row 1.
  -11    19    -20  
  3    11    -8  
  -1    -15    -6  

18.Expand along column 1.
  10    15    12  
  1    -7    -18  
  2    13    -12  

19.Expand along column 3.
  12    -16    -10  
  16    20    -8  
  19    -19    5  

20.Expand along row 2.
  -11    15    10  
  -14    20    -13  
  4    -3    -20  

21.Expand along column 1.
  16    -1    17  
  13    -10    15  
  2    -16    5  

 

Name _____________________________
Date ___________________
Matrices
(Answer ID # 0540024)
Calculate the determinant of each matrix. Show your work.

1.Expand along column 3.
  19    -1    1  
  -18    -6    -11  
  9    16    15  

-234 + 3443 - 1980 = 1229
2.Expand along column 2.
  -1    17    -12  
  2    20    0  
  8    -5    -4  

2256
3.Expand along column 1.
  6    14    -5  
  -12    -6    -7  
  19    -9    16  

-954 + 2148 - 2432 = -1238
4.Expand along row 2.
  -19    -4    16  
  13    -13    -10  
  20    -6    -2  

-1352 + 3666 + 1940 = 4254
5.Expand along row 2.
  -13    -2    14  
  8    -14    -7  
  13    -5    19  

-256 + 6006 + 637 = 6387
6.Expand along column 3.
  -18    -20    13  
  17    14    9  
  -4    -5    3  

-377 - 90 + 264 = -203
7.Expand along row 3.
  -3    13    15  
  -16    20    -18  
  -8    -19    14  

4272 + 5586 + 2072 = 11930
8.Expand along column 3.
  4    -6    1  
  -14    9    -8  
  -17    -11    12  

307 - 1168 - 576 = -1437
9.Expand along column 3.
  15    -20    5  
  -4    -19    -10  
  14    -9    7  

1510 + 1450 - 2555 = 405
10.Expand along column 1.
  4    -13    -4  
  -2    -1    1  
  18    17    11  

-112 - 150 - 306 = -568
11.Expand along row 3.
  -4    -12    4  
  17    -17    18  
  20    -2    -15  

-2960 - 280 - 4080 = -7320
12.Expand along column 1.
  18    16    6  
  2    7    3  
  -6    -1    -3  

-324 + 84 - 36 = -276
13.Expand along row 2.
  -16    16    12  
  -10    -7    -4  
  0    -17    -20  

-1160 - 2240 + 1088 = -2312
14.Expand along column 3.
  -18    -5    -16  
  13    5    -8  
  17    10    -6  

-720 - 760 + 150 = -1330
15.Expand along row 3.
  1    9    -3  
  15    -17    -20  
  -9    6    -15  

2079 - 150 + 2280 = 4209
16.Expand along row 2.
  -15    20    -20  
  -4    15    4  
  8    5    -16  

-880 + 6000 + 940 = 6060
17.Expand along row 1.
  -11    19    -20  
  3    11    -8  
  -1    -15    -6  

2046 + 494 + 680 = 3220
18.Expand along column 1.
  10    15    12  
  1    -7    -18  
  2    13    -12  

3180 + 336 - 372 = 3144
19.Expand along column 3.
  12    -16    -10  
  16    20    -8  
  19    -19    5  

6840 + 608 + 2480 = 9928
20.Expand along row 2.
  -11    15    10  
  -14    20    -13  
  4    -3    -20  

-3780 + 3600 - 351 = -531
21.Expand along column 1.
  16    -1    17  
  13    -10    15  
  2    -16    5  

3040 - 3471 + 310 = -121

Polynomials
(Answer ID # 0590712)
Multiply.

1.(-12x6 + 6x3 + 12x2) (9x + 5) 
2.(-5x2 + 3x + 2) (5x2 + 3x + 5) 
3.(2x6 + 12x3 - 12x) (-4x + 4) 
4.(8x2 + 3x - 4) (12x2 + 9x + 11) 
5.(8x2 + 3x + 2) (9x2 - 9x - 2) 
6.(12) (3x2 - 2x - 11) 
7.(9x - 12) (8x + 3) 
8.(-11x5 - 2x3 - 9) (-2x2 - 11x - 8) 
9.(7x7 - 4x4 + 6x) (6x2 + 3x + 6) (-4x2 + 6x + 11) 
10.(-10x + 4) (8x2 - 12x + 9) 
11.(2x4 - 6x2) (-12x + 9) (-6x2 - 10x - 5) 
12.(8x + 8) (-6x - 7) 
13.(11x2 - 7x + 12) (12x + 4) 
14.(10) (4x2 + 10x + 4) 
15.(-2x7 - 10x6 - 12x3) (-7x2 - 12x - 6) (6x - 10) 
16.(-11x2 + 6x + 8) (9x - 2) 
17.(4x + 7) (9x + 3) 
18.(-9x6 + 6x5 - 11x4) (-7x - 2) (-4x - 7) 
19.(8x + 8) (2x3 - 8x2 + 8x - 11) 
20.(9x7 + 9x4 - 5) (-8x3 + 6x2 + 2x - 7) (-7x - 11) 

 

Name _____________________________
Date ___________________
Polynomials
(Answer ID # 0658227)
Multiply.

1.(-12x6 + 6x3 + 12x2) (9x + 5) 

-108x7  -  60x6  +  54x4  +  138x3  +  
60x2
2.(-5x2 + 3x + 2) (5x2 + 3x + 5) 

-25x4  -  6x2  +  21x  +  10
3.(2x6 + 12x3 - 12x) (-4x + 4) 

-8x7  +  8x6  -  48x4  +  48x3  +  
48x2  -  48x
4.(8x2 + 3x - 4) (12x2 + 9x + 11) 

96x4  +  108x3  +  67x2  -  3x  -  
44
5.(8x2 + 3x + 2) (9x2 - 9x - 2) 

72x4  -  45x3  -  25x2  -  24x  -  
4
6.(12) (3x2 - 2x - 11) 

36x2  -  24x  -  132
7.(9x - 12) (8x + 3) 

72x2  -  69x  -  36
8.(-11x5 - 2x3 - 9) (-2x2 - 11x - 8) 

22x7  +  121x6  +  92x5  +  22x4  +  
16x3  +  18x2  +  99x  +  72
9.(7x7 - 4x4 + 6x) (6x2 + 3x + 6) (-4x2 + 6x + 11) 

-168x11  +  168x10  +  420x9  +  579x8  +  
366x7  -  240x6  -  420x5  -  120x4  +  
360x3  +  414x2  +  396x
10.(-10x + 4) (8x2 - 12x + 9) 

-80x3  +  152x2  -  138x  +  36
11.(2x4 - 6x2) (-12x + 9) (-6x2 - 10x - 5) 

144x7  +  132x6  -  492x5  -  486x4  +  
180x3  +  270x2
12.(8x + 8) (-6x - 7) 

-48x2  -  104x  -  56
13.(11x2 - 7x + 12) (12x + 4) 

132x3  -  40x2  +  116x  +  48
14.(10) (4x2 + 10x + 4) 

40x2  +  100x  +  40
15.(-2x7 - 10x6 - 12x3) (-7x2 - 12x - 6) (6x - 10) 

84x10  +  424x9  -  148x8  -  960x7  -  
96x6  +  24x5  -  1008x4  -  720x3
16.(-11x2 + 6x + 8) (9x - 2) 

-99x3  +  76x2  +  60x  -  16
17.(4x + 7) (9x + 3) 

36x2  +  75x  +  21
18.(-9x6 + 6x5 - 11x4) (-7x - 2) (-4x - 7) 

-252x8  -  345x7  -  92x6  -  543x5  -  
154x4
19.(8x + 8) (2x3 - 8x2 + 8x - 11) 

16x4  -  48x3  -  24x  -  88
20.(9x7 + 9x4 - 5) (-8x3 + 6x2 + 2x - 7) (-7x - 11) 

504x11  +  414x10  -  720x9  +  747x8  +  
1107x7  -  720x6  +  243x5  +  413x4  -  
230x3  +  400x2  -  135x  -  385

F/T Jan 13-17

posted Jan 12, 2012, 8:52 AM by Alicegop Keeler   [ updated Jan 17, 2012, 8:30 AM by Alice Keeler ]

Warm Up - Practice graphing systems of inequalities.
**Go through this Presentation, work with a partner would be great. Post evidence you followed along on your WP blog**

Graphing Linear Systems



#47 Determinant of 3x3 matrix and polynomials
Take notes on this video.  Probably you will need to watch it more than once. 
On my desk are worksheets with the 3x3 determinants.  Please ask the sub to give you one. Do not just take it off my desk. 
SHOW WORK ON PAPER or on iPad 
Include your WORK when you turn into the wordpress blog post you make. 
The answers are below so you need to have WORK shown in order to get credit. 
You will not get to the 2nd page of polynomials, hold on to it for next time.
Click Here for a couple of examples to help you if you are having trouble. 
Title: 3x3 determinants and polynomials
XP: 100
Category: Alg2, Classwork
Tags: matrix, determinant

determinant formula
Notice the minus on the b. This means you change the sign. 

3x3 matrix notes

Click here to link to the PowerPoint for this video.

From example #3


This is for next time also, but if you finish the matrix problems you can try this.
#48 Take this practice quiz. Need to get at least 20%
http://www.quia.com/quiz/3461693.html 



#47 worksheets
Calculate the determinant of each matrix. Show your work.

1.   Expand along column 3.
  19     -1     1  
  -18     -6     -11  
  9     16     15  

2.   Expand along column 2.
  -1     17     -12  
  2     20     0  
  8     -5     -4  

3.   Expand along column 1.
  6     14     -5  
  -12     -6     -7  
  19     -9     16  

4.   Expand along row 2.
  -19     -4     16  
  13     -13     -10  
  20     -6     -2  

5.   Expand along row 2.
  -13     -2     14  
  8     -14     -7  
  13     -5     19  

6.   Expand along column 3.
  -18     -20     13  
  17     14     9  
  -4     -5     3  

7.   Expand along row 3.
  -3     13     15  
  -16     20     -18  
  -8     -19     14  

8.   Expand along column 3.
  4     -6     1  
  -14     9     -8  
  -17     -11     12  

9.   Expand along column 3.
  15     -20     5  
  -4     -19     -10  
  14     -9     7  

10.   Expand along column 1.
  4     -13     -4  
  -2     -1     1  
  18     17     11  

11.   Expand along row 3.
  -4     -12     4  
  17     -17     18  
  20     -2     -15  

12.   Expand along column 1.
  18     16     6  
  2     7     3  
  -6     -1     -3  

13.   Expand along row 2.
  -16     16     12  
  -10     -7     -4  
  0     -17     -20  

14.   Expand along column 3.
  -18     -5     -16  
  13     5     -8  
  17     10     -6  

15.   Expand along row 3.
  1     9     -3  
  15     -17     -20  
  -9     6     -15  

16.   Expand along row 2.
  -15     20     -20  
  -4     15     4  
  8     5     -16  

17.   Expand along row 1.
  -11     19     -20  
  3     11     -8  
  -1     -15     -6  

18.   Expand along column 1.
  10     15     12  
  1     -7     -18  
  2     13     -12  

19.   Expand along column 3.
  12     -16     -10  
  16     20     -8  
  19     -19     5  

20.   Expand along row 2.
  -11     15     10  
  -14     20     -13  
  4     -3     -20  

21.   Expand along column 1.
  16     -1     17  
  13     -10     15  
  2     -16     5  

 

Name _____________________________
Date ___________________
Matrices
(Answer ID # 0540024)
Calculate the determinant of each matrix. Show your work.

1.   Expand along column 3.
  19     -1     1  
  -18     -6     -11  
  9     16     15  

-234 + 3443 - 1980 = 1229
2.   Expand along column 2.
  -1     17     -12  
  2     20     0  
  8     -5     -4  

2256
3.   Expand along column 1.
  6     14     -5  
  -12     -6     -7  
  19     -9     16  

-954 + 2148 - 2432 = -1238
4.   Expand along row 2.
  -19     -4     16  
  13     -13     -10  
  20     -6     -2  

-1352 + 3666 + 1940 = 4254
5.   Expand along row 2.
  -13     -2     14  
  8     -14     -7  
  13     -5     19  

-256 + 6006 + 637 = 6387
6.   Expand along column 3.
  -18     -20     13  
  17     14     9  
  -4     -5     3  

-377 - 90 + 264 = -203
7.   Expand along row 3.
  -3     13     15  
  -16     20     -18  
  -8     -19     14  

4272 + 5586 + 2072 = 11930
8.   Expand along column 3.
  4     -6     1  
  -14     9     -8  
  -17     -11     12  

307 - 1168 - 576 = -1437
9.   Expand along column 3.
  15     -20     5  
  -4     -19     -10  
  14     -9     7  

1510 + 1450 - 2555 = 405
10.   Expand along column 1.
  4     -13     -4  
  -2     -1     1  
  18     17     11  

-112 - 150 - 306 = -568
11.   Expand along row 3.
  -4     -12     4  
  17     -17     18  
  20     -2     -15  

-2960 - 280 - 4080 = -7320
12.   Expand along column 1.
  18     16     6  
  2     7     3  
  -6     -1     -3  

-324 + 84 - 36 = -276
13.   Expand along row 2.
  -16     16     12  
  -10     -7     -4  
  0     -17     -20  

-1160 - 2240 + 1088 = -2312
14.   Expand along column 3.
  -18     -5     -16  
  13     5     -8  
  17     10     -6  

-720 - 760 + 150 = -1330
15.   Expand along row 3.
  1     9     -3  
  15     -17     -20  
  -9     6     -15  

2079 - 150 + 2280 = 4209
16.   Expand along row 2.
  -15     20     -20  
  -4     15     4  
  8     5     -16  

-880 + 6000 + 940 = 6060
17.   Expand along row 1.
  -11     19     -20  
  3     11     -8  
  -1     -15     -6  

2046 + 494 + 680 = 3220
18.   Expand along column 1.
  10     15     12  
  1     -7     -18  
  2     13     -12  

3180 + 336 - 372 = 3144
19.   Expand along column 3.
  12     -16     -10  
  16     20     -8  
  19     -19     5  

6840 + 608 + 2480 = 9928
20.   Expand along row 2.
  -11     15     10  
  -14     20     -13  
  4     -3     -20  

-3780 + 3600 - 351 = -531
21.   Expand along column 1.
  16     -1     17  
  13     -10     15  
  2     -16     5  

3040 - 3471 + 310 = -121

Polynomials
(Answer ID # 0590712)
Multiply.

1.   (-12x6 + 6x3 + 12x2) (9x + 5) 
2.   (-5x2 + 3x + 2) (5x2 + 3x + 5) 
3.   (2x6 + 12x3 - 12x) (-4x + 4) 
4.   (8x2 + 3x - 4) (12x2 + 9x + 11) 
5.   (8x2 + 3x + 2) (9x2 - 9x - 2) 
6.   (12) (3x2 - 2x - 11) 
7.   (9x - 12) (8x + 3) 
8.   (-11x5 - 2x3 - 9) (-2x2 - 11x - 8) 
9.   (7x7 - 4x4 + 6x) (6x2 + 3x + 6) (-4x2 + 6x + 11) 
10.   (-10x + 4) (8x2 - 12x + 9) 
11.   (2x4 - 6x2) (-12x + 9) (-6x2 - 10x - 5) 
12.   (8x + 8) (-6x - 7) 
13.   (11x2 - 7x + 12) (12x + 4) 
14.   (10) (4x2 + 10x + 4) 
15.   (-2x7 - 10x6 - 12x3) (-7x2 - 12x - 6) (6x - 10) 
16.   (-11x2 + 6x + 8) (9x - 2) 
17.   (4x + 7) (9x + 3) 
18.   (-9x6 + 6x5 - 11x4) (-7x - 2) (-4x - 7) 
19.   (8x + 8) (2x3 - 8x2 + 8x - 11) 
20.   (9x7 + 9x4 - 5) (-8x3 + 6x2 + 2x - 7) (-7x - 11) 

 

Name _____________________________
Date ___________________
Polynomials
(Answer ID # 0658227)
Multiply.

1.   (-12x6 + 6x3 + 12x2) (9x + 5) 

-108x7   -   60x6   +   54x4   +   138x3   +  
60x2
2.   (-5x2 + 3x + 2) (5x2 + 3x + 5) 

-25x4   -   6x2   +   21x   +   10
3.   (2x6 + 12x3 - 12x) (-4x + 4) 

-8x7   +   8x6   -   48x4   +   48x3   +  
48x2   -   48x
4.   (8x2 + 3x - 4) (12x2 + 9x + 11) 

96x4   +   108x3   +   67x2   -   3x   -  
44
5.   (8x2 + 3x + 2) (9x2 - 9x - 2) 

72x4   -   45x3   -   25x2   -   24x   -  
4
6.   (12) (3x2 - 2x - 11) 

36x2   -   24x   -   132
7.   (9x - 12) (8x + 3) 

72x2   -   69x   -   36
8.   (-11x5 - 2x3 - 9) (-2x2 - 11x - 8) 

22x7   +   121x6   +   92x5   +   22x4   +  
16x3   +   18x2   +   99x   +   72
9.   (7x7 - 4x4 + 6x) (6x2 + 3x + 6) (-4x2 + 6x + 11) 

-168x11   +   168x10   +   420x9   +   579x8   +  
366x7   -   240x6   -   420x5   -   120x4   +  
360x3   +   414x2   +   396x
10.   (-10x + 4) (8x2 - 12x + 9) 

-80x3   +   152x2   -   138x   +   36
11.   (2x4 - 6x2) (-12x + 9) (-6x2 - 10x - 5) 

144x7   +   132x6   -   492x5   -   486x4   +  
180x3   +   270x2
12.   (8x + 8) (-6x - 7) 

-48x2   -   104x   -   56
13.   (11x2 - 7x + 12) (12x + 4) 

132x3   -   40x2   +   116x   +   48
14.   (10) (4x2 + 10x + 4) 

40x2   +   100x   +   40
15.   (-2x7 - 10x6 - 12x3) (-7x2 - 12x - 6) (6x - 10) 

84x10   +   424x9   -   148x8   -   960x7   -  
96x6   +   24x5   -   1008x4   -   720x3
16.   (-11x2 + 6x + 8) (9x - 2) 

-99x3   +   76x2   +   60x   -   16
17.   (4x + 7) (9x + 3) 

36x2   +   75x   +   21
18.   (-9x6 + 6x5 - 11x4) (-7x - 2) (-4x - 7) 

-252x8   -   345x7   -   92x6   -   543x5   -  
154x4
19.   (8x + 8) (2x3 - 8x2 + 8x - 11) 

16x4   -   48x3   -   24x   -   88
20.   (9x7 + 9x4 - 5) (-8x3 + 6x2 + 2x - 7) (-7x - 11) 

504x11   +   414x10   -   720x9   +   747x8   +  
1107x7   -   720x6   +   243x5   +   413x4   -  
230x3   +   400x2   -   135x   -   385

W/R Jan 11-12

posted Jan 11, 2012, 7:41 AM by Alicegop Keeler   [ updated Jan 12, 2012, 8:51 AM ]

#46 Graph the following systems of equations using your graphing calculator.  Take screen shots.  Post the equations, the graphs and the SOLUTION to your wordpress blog. 
Title: Graphing Systems XP: 100 Tags: graphing, systems



#46 worksheet
Linear Equations
(Answer ID # 0157311)
Graph each system of equations and state its solution.
1.  
y =  x  +  5

-9y = -57 - 15x




2.  4y = 2 + 2x
y =  2x  +  8






Graph each system of equations and state its solution.
3.  
y =  
5

2
x  -  
31

2

5x - 2y = 31


4.  5x - 3y = -11
3x - 4y

4
  =  
-11

4




Solve each system of equations using the substitution method.
5.  10x - y = -55
8x + 19y = -539






6.  14x - 3y = -322
3x - y = -79







Solve each system of equations using the substitution method.
7.  
y =  
-17

15
x  -  
156

5

12x - y = -481




8.  2x - 3y = -43
-9y = -104 - x





 

Solve each system of equations using the elimination method.
9.  17x + 19y = 309
12x + 19y = 369






10.  4x + 7y = 18
7x - 3y = 306







Solve each system of equations using the elimination method.
11.  
16x + 17y

8
  =  -165

80=  -4y  +  2x





12.  38x = -1906 + 36y
10x - 9y = -485





Solve each system of equations using any method.
13.  14x + 15y = 112
17x - 18y = 643






14.  16x + 13y = -438
2x + y = -46







Solve each system of equations using any method.
15.  
y =  
13

6
x  -  
45

2

16x + 17y

2
  =  205





16.  -9y = 492 - 12x
y =  
-4

3
x  +  
44

3






 

Solve each system by graphing. Find the vertices of the graph.
17.  5y    5
5x - y    19
5x - 6y    39


18.  3x - y    -6
3x + 2y    -15
6x + y    -12


19.  x - 4y    20
3x - y    -6
4x - 5y    3



Solve each system by graphing. Find the vertices of the graph.
20.  4x - 5y    -23
x - 3y    -4
x + 2y    1
3y    9


21.  x + y    10
5x - 3y    -22
2x + y    0
3x - 7y    0


22.  2x + y    11
5x + y    0
4x - 5y    29
3x - 4y    0



Solve each system by graphing. Find the vertices of the graph.
23.  3x - 2y    12
5x - 2y    20
5x - y    41
9x - 7y    53


24.  x - 4y    -7
4x - y    32
4x - y    17
x + y    3


25.  5x - 3y    31
5y    -35
5x + 2y    21



 

Find the minimum and maximum values of the objective quantity.
26.  3x - 2y    20
7x - 10y    36
5x + 2y    -20
f(x,y) = -12x - 3y + 22


27.  11x - 5y    86
7x - 9y    14
x + y    2
f(x,y) = 2x - 8y


28.  5x    15
5x - 3y    27
3y    -27
f(x,y) = -3x - 5y



Find the minimum and maximum values of the objective quantity.
29.  5x - 6y    15
x - y = 3
2x    0
3y    -15
f(x,y) = -12x + 6y


30.  2x - y    5
4x + 3y    55
3x + 2y    4
11x - 4y    -8
f(x,y) = -7x - 11y


31.  6x + 7y    58
2x + 3y    4
x + 5y    2
6x    30
f(x,y) = -8x - 12y



Find the minimum and maximum values of the objective quantity.
32.  3x - 2y    13
2y    -16
3x    3
f(x,y) = 5x + 6y


33.  13x - 2y    23
11x - 8y    51
x - y    3
11x - 3y    9
f(x,y) = 4x - 2y


34.  4x - 5y    -16
2x - y    -2
x - 2y    -4
2x - y    -2
f(x,y) = -x - 12y - 14










1-10 of 38