PHY 684: RF superconductivity for accelerators

Instructor: Sergey Belomestnykh

Stony Brook University, Fall semester of 2011

2:30 - 3:50, Tu & Th, P119

beginning September 6th classes will be held at BNL in building 911:

2:30 - 4:00 pm, Tuesday, 2nd floor Small Conference Room

1:30 - 3:00 pm, Thursday, 3rd floor Conference Room

Students who do not already work at BNL, please contact the instructor to arrange access to BNL and, if necessary, transportation.

Purpose and Audience

This graduate level course covers application of superconducting radio frequency (SRF) technology to contemporary particle accelerators: storage rings, pulsed and CW linear accelerators (linacs), including energy recovery linacs (ERLs). The course will address physics and engineering aspects of using SRF in accelerators. It will cover fundamentals of RF superconductivity, types of SRF accelerating structures, phenomena limiting performance of those, beam-cavity interactions issues specific to superconducting cavities, different approaches to designing SRF systems and engineering of superconducting cavity cryomodules. The course is intended for graduate students pursuing accelerator physics and graduate engineers and physicists who want to familiarize themselves with superconducting RF systems.

Prerequisites: Classical mechanics, thermodynamics, electrodynamics, and physical or engineering mathematics, all at entrance graduate level.

Objectives

Upon completion of this course, the students are expected to understand the physics underlying RF superconductivity and its application to accelerators, the advantages and limitations of SRF technology. The aim is to provide students with ideas and approaches enabling them to evaluate and solve problems related to application of superconducting cavities to accelerators, as well actively participate in engineering of SRF systems for various accelerators.

Instruction Method

This course includes a series of 20+ lectures and exercise sessions. Homework problems will be assigned. Homework will be graded and answers provided in the exercise sessions. There will be a final exam at the conclusion of the course.

Course Content

The course will include a brief introduction of the basic concepts of microwave cavities and the basic concepts of RF superconductivity. Then it will cover the beam-cavity interaction issues in accelerators: wake fields and higher-order modes (HOMs) in superconducting structures, associated with them bunched beam instabilities and approaches to deal with these instabilities (HOM absorbers and couplers, cavity geometry optimization, …), bunch length manipulation with SRF cavities, beam loading effects, etc. Following that we will discuss a systems approach and its application to engineering of SRF systems for accelerators. Finally, we will address issues related to engineering of the SRF system components: cryostats, cavities, input couplers, HOM loads, and frequency tuners.

Textbook

“RF Superconductivity for Accelerators”, by H. Padamsee, J. Knobloch, and T. Hays, John Wiley & Sons, 2nd edition (2008).

Reading Requirements

It is recommended that students re-familiarize themselves with the fundamentals of electrodynamics at the level of “Fields and Waves in Communication Electronics“ (Chapters 1 through 11) by S. Ramo, J. R. Whinnery, and T. Van Duzer, John Wiley & Sons, 3rd edition (1994) or “Classical Electrodynamics” (Chapters 1 through 8) by J. D. Jackson, John Wiley & Sons, 3rd edition (1999).

Additional suggested reference books and papers:

“Handbook of Accelerator Physics and Engineering”, edited by A. W. Chao and M. Tigner, World Scientific, 3rd print (2006)

“RF Superconductivity: Science, Technology, and Applications,” by H. Padamsee, Wiley-VCH (2009).

"Introduction to Wakefields and Wake Potentials" by P. B. Wilson, SLAC-PUB-4547 (1989).

"High Energy Electron Linacs: Application to Storage Ring RF Systems and Linear Colliders" by P. B. Wilson, SLAC-PUB-2884 (1982).

"Fundamental-Mode RF Design in e+e- Storage Ring Factories" by P. B. Wilson, SLAC-PUB-6062 (1993).

Credit Requirements

Students will be evaluated based on the following performances: final exam (50%), homework assignments and class participation (50%).

Lecture Notes and Homework Problems

August 30 - Lecture 1: Introduction

September 1 - Lecture 2: Brief survey of accelerators

September 6 - Lecture 3: RF fundamentals, part 1

September 8 - Lecture 4: RF fundamentals, part 2

September 13 - Homework #1, due on September 20, before the lecture

September 13 - Lecture 5: SRF fundamentals, part 1

September 15 - Lecture 6: SRF fundamentals, part 2

September 20 - Lecture 7: Related phenomena

September 22 - Review session

September 27 - Homework #2, due on October 4, before the lecture

September 27 - Lecture 8: SRF system requirements

September 29 - holiday (Rosh Hashanah), no classes

October 4 - Lecture 9: Beam-cavity interaction

RF_power_with_bean_loading.pdf

October 6 - Review session

October 6 - Lecture 10: Systems engineering, part 1

October 11 - Lecture 11: Systems engineering, part 2

October 13 - Homework #3, due on October 25, before the lecture

October 13 - Lecture 12: Cavity design

October 18 & 20 - no classes

October 25 - Lecture 13: Cryomodule design

October 27 - Review session

November 1 - Lecture 14: Fundamental power couplers

November 3 - Lecture 15: HOM dampers

November 8 - Lecture 16: Frequency tuners

November 10 - Homework #4, due on November 15, before the lecture

November 10 - Lecture 17: Cavity fabrication and processing

November 15 - Lecture 18: High power RF systems

November 17 - Review session

November 17 - Lecture 19: Refrigeration and cryogenics (guest lecture by R. Than)

November 22 - Lecture 20: Low temperature material properties and heat transfer (guest lecture by R. Than)

November 24 - holiday (Thanksgiving), no classes

November 29 - Lecture 21: Introduction to low level RF controls (guest lecture by K. Smith)

December 1 - Lecture 22: Overview of remaining SRF challenges

December 1 - Take home final exam, due on December 6

December 8 - Closing remarks, review of the final exam (last day of classes)

Questions? Send email to sbelomestnykh-at-bnl.gov